Potential of Activated Charcoal and Aniline-Modified Charcoal in Carbon Dioxide Capture

¹Sanusi, I. M., ²Isah, A., ^{3,4}Zaki, U. F., ¹Muhammad, D. F., ¹Muhammad, K. H., ⁴Adamu, S. S., ²Kabir, M. B., ²Bello, B. A.

¹Department of Integrated Science, Federal College of Education, Gidan Madi, Sokoto, Nigeria
²Department of Applied Chemistry, Umaru Ali Shinkafi Polytechnic, Sokoto, Nigeria
³Department of Chemistry, Federal College of Education, Gidan Madi, Sokoto, Nigeria
⁴Department of Energy and Applied Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
*Corresponding Author: abduchm@yahoo.com

Accepted: October 6, 2025. Published Online: October 9, 2025

ABSTRACT

This study investigated the CO₂ adsorption capacity of activated charcoal and aniline-modified charcoal. Commercial activated charcoal was used while the aniline-modified charcoal was prepared using wet impregnation method. The results of the CO₂ capture experiment showed that both adsorbents exhibited varying degrees of CO₂ adsorption, with aniline-modified charcoal demonstrating enhanced adsorption capacity reporting maximum adsorption capacity of 1530 ppm corresponding to 45% absorption rate at 420 seconds. However, the activated charcoal demonstrated maximum adsorption capacity of 950 ppm (32.20% absorption rate) at 420 seconds. The findings highlighted the potential applications of these adsorbents in CO₂ capture and storage.

Keywords: Activated charcoal, aniline-modified charcoal, CO₂ adsorption, climate change mitigation.

INTRODUCTION

The escalating levels of atmospheric CO₂, primarily driven by fossil fuel combustion and industrial activities, pose a significant threat to the global climate. According to recent estimates, global fuel combustion released approximately 32.8 billion tons of CO₂ [1]. The increased use of personal vehicles, driven by overpopulation, further exacerbates the rise in CO₂ levels. The 2015 UN Climate Change Conference underscored the urgent need for global action to prevent severe climate change by limiting global warming below 2 °C and striving to keep it below 1.5 °C [2]. In line with this goal, the Intergovernmental Panel on Climate Change (IPCC) emphasizes the

importance of reducing CO₂ emissions to keep atmospheric concentrations below 450 ppm by the end of 2100 and prevent irreversible climate change.

Various methods have been developed for CO₂ removal from gas streams, including adsorption, absorption, cryogenics, and membranes [3]. Among these, adsorption technology has emerged as a promising approach due to its cost-effectiveness and efficiency. Recent advancements in nano-materials, particularly amine-modified nano-materials, have shown great potential for enhancing CO₂ adsorption capacity and selectivity. These nano-materials exhibit low energy consumption, chemical stability, and reversible nature, making them an attractive solution for CO₂ chemical adsorption. Amine-modified nanomaterials with porous structures, large surface areas, and abundant gas diffusion channels have proven effective for CO₂ adsorption. For instance, nanosilica, carbon nanotubes, nano cellulose, metal-organic frameworks (MOFs), and porous alumina have been explored as support materials for amine groups [4]. MOFs, in particular, have garnered attention due to their well-defined adsorptive sites, adjustable pore sizes, and functionalities.

Recent studies have demonstrated the potential of amine-modified MOFs for CO₂ capture, showcasing high adsorption selectivity and capacity [5]. Furthermore, ionic liquids (ILs) have emerged as a promising option for CO₂ adsorption due to their structure tunability, CO₂ affinity, and low volatility. Nanomaterials with high levels of amine-modified ILs have shown potential for CO₂ chemisorption, offering high sorption capacity and rapid reversibility [2]. The development of cellulose-supported solid ionic liquids (SoILs) has also been explores, demonstrating effective and low-cost sorbents for CO₂ capture [6].

This study focuses on enhancing the effectiveness of adsorption technology for CO₂ capture. The research investigates the potential of amine-modified materials (aniline-modified charcoal) for CO₂ adsorption. This research aims to contribute to the development of efficient and sustainable CO₂ capture technologies for climate change mitigation.

MATERIALS AND METHODS

Materials

Analytical grades 99.9% Activated charcoal (Sigma-Aldrich), 99.99% Carbon dioxide gas, ethanol (99.8%, Sigma Aldrich), and aniline (99.5%, Sigma Aldrich) were used in this research work.

Sample Preparation

The aniline-modified charcoal adsorbent material was prepared by a wet impregnation method as reported elsewhere [7]. To start, 6.7 g of the activated charcoal (40% of the adsorbent) was weighed and added to a crucible. Then, 10 g of aniline (60% of the adsorbent) was slowly added while stirring. Next, 77.38 g of ethanol (solvent) was gently added, and the mixture was stirred until uniform. The mixture was placed in an oven, where the ethanol was evaporated at 80 °C for 4 hours. After drying, the sample was crushed into a power, resulting in the final aniline-activated charcoal adsorbent material. Equation (1) represents the mass fraction of amine (aniline) in the adsorbent material.

Mass fraction (%) Aniline =
$$\frac{M.Aniline}{M.Aniline + M.AC} \times 100\%$$
 (1)

M._{Aniline} = Mass of Aniline

 M_{AC} = Mass of activated charcoal

Adsorption Process

The adsorption performance of each adsorbent (activated charcoal and aniline-modified charcoal) was studied at 35 °C, under atmospheric pressure in a continuous flow fixed bed reactor with an adsorption bed of 18 mm (inner diameter) and 10 cm length as presented in Figure 1. The reactor was placed horizontally on a stand. The introduction of CO₂ gas into the reactor was monitored and controlled by calibrated mass flow meter. Before the adsorption performance test, 6.5 g of adsorbent (either activated charcoal or aniline-modified charcoal) was sandwiched between two layers of glass wool in the adsorption bed and both ends of the adsorption bed was covered with rubber cocks with a holes at the centers (for the inlet and outlet of CO₂ gas). The CO₂ gas outlet pipe from the reactor bed was connected with container with 12 cm by 12 cm dimension and in this container a digital CO₂ monitoring device (NZ-2CO9) was placed. Afterwards, CO₂ gas was introduced into the reactor at a low rate of 40 mL/min, under atmospheric pressure as reported elsewhere [7]. Readings were recorded after every 30 seconds and each experiment was conducted in duplicate. The adsorption performance that is CO₂ adsorbed and %CO₂ adsorbed was calculated as follows using equation (2) and (3) respectively.

$$C_0CO_{2 ppm} = (C_{control}CO_2 - C_1CO_2) ppm$$
 (2)

Sanusi, I. M., Isah, A., Zaki, U. F., Muhammad, D. F., Muhammad, K. H., Adamu, S. S., Kabir, M. B., Bello, B. A.: Potential of Activated Charcoal and Aniline-Modified Charcoal in Carbon Dioxide Capture

$$\% CO2ad = CoCO2
CcontrolCO2$$
(3)

Where:

C_{control}CO₂ = Concentration of CO₂ in the container without adsorbent material in the adsorption bed

 C_0CO_2 = Concentration of CO_2 Adsorbed (ppm)

 C_1CO_2 = Concentration of CO_2 available in the container after adsorption (ppm)

 $\% CO_{2ad} = \% CO_2 adsorbed$

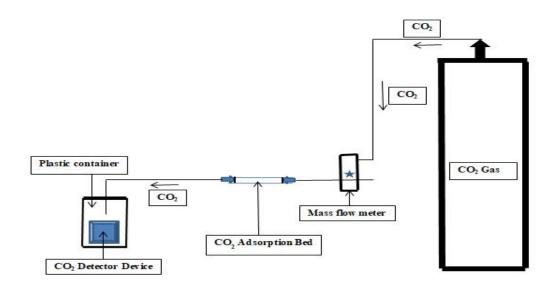


Figure 1: Schematic Diagram for the CO₂ Adsorption Process Set-Up

RESULTS AND DISCUSSION

Table 1 presents the results of the control experiment for CO₂ adsorption without an adsorbent. The data indicates that the CO₂ concentration remains steady at 414 ppm for the first 270 seconds. Beyond this point, the CO₂ concentration begins to rise, reaching to 1017 ppm at 300 seconds and steadily increasing to 5020 ppm by 600 seconds. As expected, without an adsorbent, the CO₂ concentration is unaffected by adsorption, resulting in 0% CO₂ adsorbed throughout the experiment.

Sanusi, I. M., Isah, A., Zaki, U. F., Muhammad, D. F., Muhammad, K. H., Adamu, S. S., Kabir, M. B., Bello, B. A.: Potential of Activated Charcoal and Aniline-Modified Charcoal in Carbon Dioxide Capture

Table 1: Results of the Control Experiment for CO ₂ Adsorption without Adsorbent						
$M_{Ad}(g)$	_{mL} CO ₂	tCO ₂ (Sec.)	C _{control} CO ₂ (ppm)	C _o CO ₂ (ppm)	% CO _{2ad}	
0	0	0	414	0	0	
0	20	30	414	0	0	
0	40	60	414	0	0	
0	60	90	414	0	0	
0	80	120	414	0	0	
0	100	150	414	0	0	
0	120	180	414	0	0	
0	140	210	414	0	0	
0	160	240	414	0	0	
0	180	270	414	0	0	
0	200	300	1017	0	0	
0	220	330	1217	0	0	
0	240	360	1720	0	0	
0	260	390	2112	0	0	
0	280	420	2950	0	0	
0	300	450	3530	0	0	
0	320	480	4150	0	0	
0	340	510	4360	0	0	
0	360	540	4550	0	0	
0	380	570	4800	0	0	
0	400	600	5020	0	0	

 $C_{control}CO_2$ = Concentration of CO_2 in the container without adsorbent material

 C_0CO_2 = Concentration of CO_2 Adsorbed (ppm)

 $\% CO_{2ad} = \% CO_2 adsorbed$

 $M_{Ad} = Mass of adsorbent$

 $tCO_2 = CO_2$ Released time

 $_{mL}CO_2 = CO_2$ released (mL)

The results presented in Table 2 reveal the CO₂ adsorption capacity of activated charcoal. The data shows constant CO₂ concentration for the first 270 seconds, the CO₂ concentration remains

constant at 414 ppm and this indicates there no adsorption during 270 seconds. The CO₂ adsorption was observed at 300 seconds, with the amount of CO₂ adsorbed increasing with time. The maximum CO₂ adsorption capacity is observed at 420 seconds, with 950 ppm of CO₂ adsorbed, corresponding to a 32.20% adsorption rate which is in agreement with the research carried out by [8] that reported a CO₂ adsorption capacity of 26.7% on activated carbon. At time above 420 seconds, the adsorption rate decreases, and the amount of CO₂ adsorbed decreases, indicating saturation of the adsorbent material.

Table 2: Results of the CO₂ Adsorption on Activated Charcoal

$M_{Ad}(g)$	_{mL} CO ₂	tCO ₂ (Sec.)	C _{control} CO ₂ (ppm)	C ₁ CO ₂ (ppm)	C _o CO ₂ (ppm)	% CO ₂ ad
6.5	0	0	414	414	0	0
6.5	20	30	414	414	0	0
6.5	40	60	414	414	0	0
6.5	60	90	414	414	0	0
6.5	80	120	414	414	0	0
6.5	100	150	414	414	0	0
6.5	120	180	414	414	0	0
6.5	140	210	414	414	0	0
6.5	160	240	414	414	0	0
6.5	180	270	414	414	0	0
6.5	200	300	1017	752	265	26.06
6.5	220	330	1217	900	317	26.05
6.5	240	360	1720	1200	520	30.23
6.5	260	390	2110	1460	650	30.78
6.5	280	420	2950	2000	950	32.20
6.5	300	450	3490	2550	940	26.93
6.5	320	480	4150	3350	800	19.28
6.5	340	510	4360	4300	60	1.38
6.5	360	540	4550	4450	100	2.20
6.5	380	570	4800	4600	200	4.17
6.5	400	600	5020	4740	280	5.58

 C_1CO_2 = Concentration of CO_2 in the container after application of adsorbent (ppm)

The results presented in Table 3 demonstrate the CO₂ adsorption capacity of aniline-modified charcoal. Again, the data shows constant CO₂ concentrations of 414 ppm for the first 270 seconds. The aniline-modified charcoal shows a similar adsorption trend to activated charcoal (Table 2), but with slightly higher adsorption capacities at certain times. At 300 seconds the amount of CO₂ adsorbed was 367 ppm which translated to 36.09% CO₂ adsorbed and this is inconformity with findings elsewhere [9] that reported a CO₂ adsorption capacity of 32.5% on modified activated carbon.

The maximum CO₂ adsorption capacity is observed at 450 seconds, with 1530 ppm of CO₂ adsorbed, corresponding to a 45% adsorption rate. At time above 450 seconds, the adsorption rate decreases, and the amount of CO₂ adsorbed decreases, indicating saturation of the adsorbent. The findings of this study are consistent with previous research on CO₂ adsorption using activated charcoal and modified activated charcoal. For example, a study by Shen *et al.* [10] reported that modified activated charcoal exhibited enhanced CO₂ adsorption capacity compared to unmodified activated charcoal. Another study by Zhang *et al.* [11] demonstrated the potential of activated charcoal for CO₂ capture and storage.

Table 3: Results of the CO₂ Adsorption on Aniline-Modified Charcoal Adsorbent

M _{ad} (g)	mL CO ₂ released	Time/s	Conc. of CO ₂ in the container (ppm) without adsorbent	Conc. of CO ₂ in the container (ppm)	Conc. of CO ₂ Adsorbed (ppm)	% CO ₂ adsorbed
6.5	0	0	414	414	0	0
6.5	20	30	414	414	0	0
6.5	40	60	414	414	0	0
6.5	60	90	414	414	0	0
6.5	80	120	414	414	0	0
6.5	100	150	414	414	0	0
6.5	120	180	414	414	0	0
6.5	140	210	414	414	0	0
6.5	160	240	414	414	0	0
6.5	180	270	414	414	0	0
6.5	200	300	1017	650	367	36.09
6.5	220	330	1217	760	457	37.5
6.5	240	360	1720	1000	720	41.86

Sanusi, I. M., Isah, A., Zaki, U. F., Muhammad, D. F., Muhammad, K. H., Adamu, S. S., Kabir, M. B., Bello, B. A.: Potential of Activated Charcoal and Aniline-Modified Charcoal in Carbon Dioxide Capture

6.5	260	390	2112	1212	900	42.61
6.5	280	420	2950	1650	1300	44.07
6.5	300	450	3400	1870	1530	45.00
6.5	320	480	4150	2770	1380	33.25
6.5	340	510	4360	3600	760	17.43
6.5	360	540	4550	3740	810	17.80
6.5	380	570	4800	3950	850	17.71
6.5	400	600	5020	4140	880	17.53

CONCLUSION

This study revealed the potential of activated charcoal and aniline-activated charcoal for CO₂ adsorption particularly in continuous flow system. The findings highlighted the importance of modifying activated charcoal to enhance its CO₂ adsorption capacity. Activated carbon reported maximum sorption capacity of 950 ppm (32.20% absorption rate) at 420 seconds while the aniline-activated charcoal reveals maximum sorption capacity of 1530 ppm (45%) at 450 seconds. The results suggest that activated charcoal and aniline-activated charcoal have potential applications in CO₂ capture and storage, particularly in industrial settings where CO₂ concentrations are high. However, further research is needed to optimize the CO₂ adsorption process and develop efficient methods for CO₂ capture and storage.

ACKNOWLEDGEMENT

The authors wish to acknowledge the Tertiary Education Trust Fund (TETFUND) through the Federal College of Education Gidan Madi for funding this research.

REFERENCES

- [1] Grim, R. G., Huang, Z., Guarnieri, M. T. & Fermi, A. (2020). Global fuel combustion CO₂ emissions. Environmental Science & Technology, 54(19), 11234-11243.
- [2] Streck, C., Keenlyside, P. & Unger, M. (2022). The Paris Agreement and the global climate change regime. Climate Policy, 22(5), 631-642.
- [3] Mancini, N. D. & Zimmerman, J. B. (2022). CO₂ capture and utilization: A review of the current status and future directions. *Energy & Fuels*, 36(10), 5334-5354.

- [4] Deng, Y. & Park, J. (2021). Recent advances in CO₂ capture using amine-modified nanomaterials. *Journal of Materials Chemistry* A, 9(12), 7321-7334.
- [5] Shi, Z., Tao, Y. & Wu, J. (2020). Thermally and chemically robust metal-organic frameworks for CO₂ capture. *Journal of the American Chemical Society*, 142(15), 6785-6794.
- [6] García-Gutiérrez, P., Sánchez-Bautista, A. F., Palomar, J., Moya, C. & González-Miquel, M. (2023). Cellulose-supported solid ionic liquids for CO₂ adsorption: A sustainable approach. *Chemical Engineering Journal*, 431, 133924.
- [7] Isah, A. (2022). CO₂ hydrogenation to methane over Zeolite promoted Ni/CeO₂ Catalysts at Atmospheric Pressure. Int J Appl Sci Res Rev. 9:101.
- [8] Song, J., Shen, J. & Li, Y. (2020). CO₂ adsorption on activated carbons: A review *Journal of Environmental Sciences*, 90, 1-13.
- [9] Guo, Y., Zhang, Y. & Wang, X. (2022). Activated carbon for CO₂ capture: A review of recent advances. *Carbon Capture Science & Technology*, 2, 100023.
- [10] Shen, Y., Zhang, Y. & Chen, G. (2020). Enhanced CO₂ adsorption on modified activated carbon. *Journal of Environmental Sciences*, 90, 120-128.
- [11] Zhang, Y., Liu, X. & Wang, Y. (2022). CO₂ capture and storage using activated carbon: A review. *Journal of Cleaner Production*, 334, 130244.