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ABSTRACT 

This review is to address gaps in integrating predictive accuracy, optimisation efficiency, and 

technological adaptability in metal forming simulations. The review aimed to evaluate 

computational modelling techniques, benchmark optimisation approaches, identify machine 

learning and hybrid innovations, analyse multi-scale and multi-physics integration, and compare 

technological advancements in simulation platforms. A systematic analysis of recent literature 

employing finite element methods, machine learning, and hybrid frameworks revealed that 

machine learning models significantly enhance defect prediction and process optimisation but 

require extensive data and face generalizability challenges. Finite element methods are still the 

most used, which provides comprehensive thermo-mechanical data at the expense of the intense 

computation and mesh maintenance. Hybrid and multi-scale models present a better prediction 

capability in the microstructure and mechanical properties, but have a complex coupling and 

validation problem under consideration. Scalability and accessibility are enhanced with cloud-

based and adaptive means of simulation platforms, although the complexity of integration and data 

security is problematic. All of this evidence collectively shows that coupled data-based and 

physics-based design enhances the usefulness and fidelity of the simulation, and the use of 

technological applications enables more effective application to industry. The review highlights 

the necessity of additional optimisation of the multi-scale principles and the solid data acquisition 

to develop predictivity modelling and digitalisation of metal forming processes. 
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INTRODUCTION 

The studies on computational modelling of metal forming have become an important field of 

research because it plays the key in improving the manufacturing process, minimizing 

expenditures, and enhancing the quality of products in the automotive industry, aerospace and 

industrial production [1-3]. Ever since the very initial work on finite element methods (FEM) and 

numerical simulation in the 1980s and 1990s, the field has advanced to high-level constitutive 

models, adaptive remeshing, and multi-scale simulations capturing microstructural evolution [4-

6]. The growing complexity of the metal forming processes, in addition to the stipulation of 

lightweight materials and accurate outcomes, has led to the integration of computation methods 

into artificial intelligence and optimisation calculations [7, 8]. Remarkably, real-time process 

control and defect prediction have become possible with the advent of machine learning (ML) and 

neural networks, which have increased the speed of prediction [9-11]. Its industry adoption 

indicates the value that the developments have in practice, letting simulation-based optimisation 

cut development cycles and improve sustainability [1, 12]. 

Despite these advances, challenges remain in accurately modelling nonlinear material 

behavior, multi-stage the creation of forms, formations, and formings, and the incorporation of 

multi-physics, like thermo-mechanical and electro-mechanical couplings and the instigations of 

electricity. They usually have a high computer demand with multiple, large subroutines that need 

specialized experience to be applied and played out on the FEM models that are available today 

[12]. Additionally, the predictive power of data-driven models can strongly vary due to the quality 

and diversity of the training data that is usually not enough to cover the variability of the whole 

process [11, 13]. There are on-going debates on the most effective manual ways of constitutive 

modelling, whether physics-only, data-based or mixed and the compromises between 

understanding a model and its computing performance [11, 14]. The distance between theoretical 

innovation and day-to-day, scalable deployment is a call for complete frameworks that combine 

simulation, optimization, and machine learning in easy-to-used platforms [12, 15, 16]. Neglect of 

these gaps will lead to poor process design and high cost of production [8]. 

The idea behind creating this review has to do with the interaction of the computational mechanics, 

machine learning and optimization techniques. Among the central concepts are constitutive 

modelling of material behaviour, surrogate modelling as an efficient way of simulation and data-

driven predictive analytics [10, 11]. These factors join to create adaptive, robust, and scalable 
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computational tools that may be used to cope with the nonlinearities and complexities that are 

presented by the metal forming processes [17]. The framework fits the objective of promoting 

integrated modelling methods that add to the theory and to industrial utility at the same time. 

This systematic review is aimed at evaluating recent developments in theory, practice, and 

technologies behind computational modelling of metal forming, and in particular, the application 

of machine learning and optimisation techniques. The review would address the identified 

knowledge gaps by synthesising multidisciplinary research, thus offering a consolidated source 

that could assist in creating and developing effective, precise, and convenient modelling tools. The 

value added has been to bring together the different methodologies and point out the emerging 

trends that are likely to change the design and control of the metal forming process [9, 10, 12]. 

This review has a systematic approach that includes the thorough literature review, use of 

peer-reviewed studies of the last 10 years, and a thematic analysis organized around computational 

strategies, application of machine learning, and optimisation frameworks. Results have been 

arranged in such order that after stating certain fundamental theoretical developments, the practical 

case studies, and emerging technological platforms have been provided and lastly a discussion on 

future research directions and industrial impacts have been provided [16, 18]. 

 

METHODOLOGY  

To search the literature systematically, a set of keywords was used and related studies in 

computational modelling of metal forming processes were identified. The original research 

question was refined into five concise search queries, and this was done in order to cover it well 

yet be specific. This expansion method of queries avoids exclusion of niche investigations, but 

results in the creation of feasible result set that is consistent with certain aspects of the research. 

The modified queries embraced theoretical development, practical utilisation, 

technological development, machine learning, and combinations of modalities in computational 

metal forming. The predefined inclusion and exclusion criteria were applied to each query in a 

variety of academic databases such as Google Scholar, resulting in 274 initial papers as of a 

database with more than 270 million research publications. 

Inclusion criteria included peer-reviewed articles written in English, which pertained to the 

computational modelling methods in the metal forming processes, theory, practice, and innovative 

technologies. Non-peer reviewed publications, conference abstracts lacking full papers, studies not 
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relevant to metal forming, and older than fifteen-year-old publications were excluded using 

exclusion criteria because of the need to have a contemporary study. Citation chaining 

methodology was subsequently employed, utilising backwards citation analysis to examine 

reference lists of core papers and forward citation analysis to track citing publications. This process 

identified 67 additional papers. 

The combined pool of 341 papers underwent relevance scoring procedures. Following 

systematic evaluation, 337 papers were deemed relevant, with 100 classified as highly relevant, 

ensuring comprehensive literature coverage while maintaining focus on pertinent computational 

metal forming research. 

 

RESULTS AND DISCUSSION 

This reviewed works predominantly utilize finite element methods, machine learning techniques, 

and hybrid modeling approaches, reflecting a multidisciplinary and evolving research focus. The 

comparison highlights key trends in optimization strategies, integration of multi-scale and multi-

physics models, and the adoption of emerging technologies such as AI and cloud computing, 

directly addressing the research questions on predictive accuracy, optimization efficiency, and 

technological adaptability.  

Over 50 studies demonstrated high predictive precision using advanced FE methods, AI, 

and hybrid models, with several validating against experimental data for microstructure, 

formability, and residual stresses [4,9,17]. Deep learning and neural network approaches show 

enhanced accuracy in predicting complex phenomena such as microstructural evolution and 

thickness variation [13, 19, 20]. Multiscale and multiphysics models effectively capture coupled 

thermo-mechanical and metallurgical effects, improving simulation fidelity [5, 21, 22]. Some 

studies highlight challenges in constitutive modeling accuracy, addressed by integrating data-

driven corrections and hybrid approaches [11, 23]. 

Genetic algorithms combined with surrogate models or neural networks significantly reduce 

computational time and iterations required for convergence [17, 18, 24]. 

Multi-fidelity and metamodel-based strategies balance accuracy and computational cost, 

enabling efficient optimization of complex forming processes [25-27]. Iterative learning control 

and hybrid intelligent optimization methods improve convergence speed and robustness in 

industrial applications [28, 29]. Some approaches integrate screening and variable reduction to 
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simplify optimization problems for practical use [30]. Many studies integrate multi-scale modeling 

with data-driven AI techniques, combining continuum mechanics with microstructural and 

machine learning models [5, 21, 23]. Hybrid frameworks unify CAD, simulation, and 

measurement data, enabling adaptive and real-time process control [15, 31]. Coupled 

electromagnetic-thermomechanical models demonstrate complex multiphysics integration for 

specialised forming processes, while Surrogate models and metamodels are frequently combined 

with FE simulations and evolutionary algorithms for optimisation [31]. 

Cloud-based platforms and knowledge-based FE simulations facilitate scalable, accessible, 

and adaptive modelling environments [12, 15,16]. AI and machine learning are widely adopted for 

predictive modeling, optimization, and process control, reflecting technological innovation [9, 33, 

34]. Advanced friction models, meshfree methods, and adaptive remeshing enhance simulation 

realism and computational efficiency [35-37]. Integration of CAD, expert systems, and automated 

mesh generation supports industrial applicability and automation [38]. Numerous studies validated 

models with experimental data and industrial case studies, demonstrating real-world relevance [8, 

19, 39]. Applications span automotive, aerospace, and manufacturing sectors, addressing process 

design, tool life, and product quality [1].  

Hybrid and AI-enhanced models reduce trial-and-error, cost, and development time in 

industrial forming processes [31], while some research focuses on enabling non-specialists to 

apply optimization techniques, enhancing industrial adoption. 

 

Critical Analysis and Synthesis 

The reviewed literature on computational modelling of metal forming reveals significant 

advancements in integrating machine learning, finite element methods, and hybrid modelling 

approaches to enhance prediction accuracy and process optimization. There is a clear trend toward 

combining data-driven techniques with traditional physics-based simulations to address complex 

phenomena such as microstructural evolution and multi-stage forming processes. However, 

challenges remain in terms of computational efficiency, data requirements, and the generalizability 

of models across different materials and forming conditions. Furthermore, while technological 

innovations like cloud-based platforms and adaptive remeshing improve scalability and 

robustness, the integration of multi-scale and multi-physics frameworks is still in early stages and 

requires further refinement to fully capture the intricacies of metal forming. 
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This overview of the literature on the finite element modelling of metal forming shows a set of 

themes prevailing in the body of literature: enhancement and adoption of finite element modelling 

(FEM), adopting machine learning, and optimisation approaches. The themes, their descriptions 

and the papers in which it is isolated are listed in Table 1 and Figure 1. EM continues as a core 

tool, and issues of adaptive remeshing, integration of multi-physics coupling, and microstructural 

modelling still see a lot of attention to make simulations more accurate and better able to guide 

process setup. Meanwhile, machine learning and mixed modelling techniques are proving to be 

extremely powerful prediction, parameter determination, and process optimisation tools, and are 

supplementing FEM tools. Complex technological features like cloud-based systems and hybrid 

twin structures also augment the extensibility and fabrication simulations in the manufacturing 

environment even further. 

 Table 1: The identified themes and their descriptions 

Theme Theme Description 

Finite Element Method 

(FEM) and Numerical 

Simulation Techniques 

FEM is extensively utilized for simulating metal forming processes, 

with advances in adaptive remeshing, meshfree methods, and coupled 

multiphysics modeling improving accuracy and computational 

efficiency. Research covers bulk and sheet forming, thermo-mechanical 

coupling, damage modeling, and constitutive behavior, with 

applications ranging from rolling to forging [5, 17, 22, 37, 40-43]. 

Machine Learning and 

Artificial Intelligence 

Integration 

Machine learning (ML), including neural networks and deep learning, 

is increasingly incorporated to predict defects, optimize forming 

parameters, and model microstructural evolution. Hybrid approaches 

combining ML with FEM or genetic algorithms demonstrate superior 

predictive accuracy and optimization efficiency, particularly in sheet 

metal forming and hot stamping processes  [9-11, 13, 18, 20, 29, 33, 39, 

, 44, 45]. 

Optimization Strategies 

and Surrogate Modeling 

Optimization in metal forming leverages surrogate models such as 

response surfaces, Kriging, and ANN-based metamodels to reduce 

computational cost while improving process design. Techniques include 

genetic algorithms, sequential approximate optimization, and multi-
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fidelity methods, addressing multi-objective and robust design 

problems across various forming processes  [8,17, 18, 24, 26, 27, 30, 

31, 46]. 

Microstructural Modeling 

and Multi-scale 

Simulation 

Multi-scale and microstructural modeling approaches integrate 

mesoscale phenomena like recrystallization and grain growth within 

FEM frameworks. These models enhance prediction of mechanical 

properties and process outcomes, addressing phase transformations and 

microstructure evolution during forming and rolling processes  (Jo et 

al., 2022)  (Das et al., 2012)  (Parvizian et al., 2010)  (Bambach, 2016)  

(Colombo et al., 2014). 

Hybrid Modelling 

Approaches Combining 

FEM and AI 

Hybrid models synergize FEM simulations with AI techniques such as 

neuro-fuzzy systems and machine learning to capture complex material 

behavior and optimize process parameters, improving predictive 

capabilities and reducing simulation time  [23, 31, 45, 47]. 

Technological 

Innovations in Simulation 

Platforms 

Advances include cloud-based multi-objective FEM simulations, hybrid 

twin frameworks integrating real-time sensor data, and knowledge-

based simulation platforms enhancing accessibility and adaptability of 

metal forming simulations for industrial use  [12, 15, 16]. 

Electromagnetic Metal 

Forming Modelling 

Specialized modeling of electromagnetic forming processes using 

coupled thermo-magneto-mechanical frameworks and 3D simulations 

addresses unique process physics, enabling precise control and 

optimization of these high-speed forming techniques. 

Contact and Friction 

Modeling in Forming 

Processes 

Accurate representation of contact mechanics and frictional behavior is 

critical for realistic simulations. Studies develop advanced friction 

models and contact algorithms enhancing material flow predictions and 

tool-workpiece interactions [35]. 

Preform and Die Design 

Optimization 

Computational approaches for preform and die design utilize FEM, 

optimization algorithms, and AI to reduce defects, improve load 

characteristics, and enhance formability, thereby streamlining forming 

process development  [20, 48]. 
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Figure 1: Number of papers in which the identified themes were found 

 

Chronological Review of Literature 

Computational modelling in metal forming has come a long way since its early days of simply 

having theoretical frameworks, going through stages of advanced integration of hybrid modelling 

and even machine learning. As shown in Table 2, initial studies involved finite element methods 

and numerical simulations in order to explain and figure out how to optimize metal forming 

processes. With the growing power of computation, such focuses as the multi-scale and multi-

physics computations, as well as microstructural evolution, were integrated. The last years have 

brought integration of artificial intelligence, machine learning algorithms, and cloud-based 

solutions to perform real-time and adaptive simulations, which increase predictiveness and 

optimization of the process. 
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Table 2: Research direction in computational modelling in metal forming from 1982 to 2024 

                                    

Year 

Range 

Research Direction Description 

1982–

1990 

Foundational Numerical 

Modelling and Finite 

Element Methods 

The study focused on finite element method (FEM) and 

numerical model of metal forming such as the elastoplastic, 

viscoelastic and rigid-plastic material analysis. Early focus 

was on modelling forming processes, contact problems, 

friction, and heat effects, preconditioning the process design 

and optimisation designs that take place in computational 

processes. 

1991–

2000 

Automation, Adaptive 

Meshing, and Initial 

Optimization 

Techniques 

This was a time of development of automated 3D modelling, 

adaptive remeshing and mesh generation of large deformation 

simulations. Guidelines to optimization started to develop 

including response surface techniques and internalizing an 

integration of CAD and FEM to shorten design loop and 

increase stability of the simulation. 

2001–

2010 

Enhanced FEM 

Formulations and 

Integration with 

Optimization 

The research laid stress on better finite element formulations, 

thermo-mechanical integration and better remeshing. FEM 

was incorporated with optimisation techniques, surrogate 

models, and hybrid strategies of AI and traditional modelling. 

It is also during this period when multi-objective and robust 

optimization strategies that are specific to metal forming 

processes emerged. 

2011–

2015 

Multi-fidelity Models, 

Cloud Computing, and 

Hybrid Modelling 

The emphasis had been given to multi-fidelity optimisation 

methods, finite element simulation opportunities on a cloud, 

and hybrid frameworks that are based on neural networks and 

FEM. Studies investigated state-efficient algorithms, 

modelling of large-scale and steady-state processes, friction 
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and integration of microstructural evolution in the process 

simulation. 

2016–

2020 

Machine Learning 

Integration and Multi-

scale Simulation 

Advances 

Literature notes also pointed towards the fast expansion of the 

use of machine learning to metal forming applications such as 

prediction of defects, optimization of the processing 

parameters and the prediction of formability of the metal being 

formed. Multi-unit scaling models that affect microstructural 

behaviour and phase changes became popular. The focus was 

made on the capabilities of real-time simulation and digital 

transformation of the forming processes. 

2021–

2024 

AI-driven Optimization, 

Hybrid Twin 

Frameworks, and Real-

time Adaptive 

Simulation 

The integration of artificial intelligence, especially the 

neuralization and genetic algorithms, into optimization of the 

processes and prediction of microstructure are highlighted in 

the latest research. . The synergy of simulation and real-world 

data are ways in which hybrid twins are implemented as 

accurate means of application. The innovations embrace 

sequential approximate optimization, cloud-based platforms, 

and the machine learning-based prediction models aimed at 

complicated forming situations and advanced resistant and 

strong steels. 

 

Agreement and Divergence Across Studies 

The examined literature (Table 3) broadly agrees on the critical role of finite element methods 

(FEM) and machine learning (ML), particularly artificial neural networks (ANNs), in advancing 

computational modelling for metal forming. Most studies emphasize the enhancement of 

modelling accuracy and optimization efficiency through hybrid and surrogate modelling 

techniques, integrating physics-based simulations with data-driven approaches. However, 

divergences arise concerning the complexity of integration frameworks, the extent of practical 

industrial applicability, and technological adaptability, especially regarding emerging technologies 

like cloud computing and real-time adaptive platforms. These differences are often attributable to 
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variations in process focus (sheet vs. bulk forming), specific metal materials, and the maturity level 

of the implemented computational frameworks. 

 

Table 3: Agreement and Divergence Across Studies in finite element methods (FEM) and machine 

learning (ML) 

Comparison 

Criterion 

Studies in Agreement Studies in Divergence Potential Explanations 

Modeling 

Accuracy 

Consensus exists on the 

superior accuracy of FEM 

combined with advanced 

constitutive models and ML 

for predicting metal 

forming outcomes, 

including microstructural 

evolution and defect 

prediction [4, 11, 37, 49]. 

Both pure FEM and hybrid 

ANN-FEM approaches 

demonstrate high predictive 

fidelity  [17, 44, 49]. 

Some studies highlight 

ongoing challenges in 

predicting complex 

phenomena such as 

microstructural evolution 

and damage accurately, 

especially for multi-stage or 

thermo-mechanically 

coupled processes [5, 13, 

50]. Others report 

discrepancies in prediction 

quality despite model 

calibration  [13]. 

Agreements stem from 

widespread adoption of 

FEM and ML 

techniques; divergences 

arise from differences in 

modeling scope (macro 

vs. micro-scale), material 

behavior complexity, 

and availability of 

comprehensive datasets 

for training and 

validation. 

Optimization 

Efficiency 

Multiple works confirm that 

surrogate models (ANN, 

Kriging, RSM) combined 

with genetic algorithms or 

sequential approximate 

optimization significantly 

reduce computational time 

and iterations in process 

parameter optimization  

[17, 24, 45, 51, 52]. Hybrid 

Some authors note that 

traditional polynomial 

response surface models 

(PRS) require more data and 

iterations compared to ANN 

surrogate models, indicating 

variability in surrogate 

model performance [17]. 

There are also discussions 

on the computational burden 

Differences are 

attributed to the choice of 

surrogate model type, 

problem dimensionality, 

and complexity of the 

forming process. Studies 

with extensive ML 

integration tend to show 

greater efficiency gains. 
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and multi-fidelity 

approaches enhance 

convergence speed and 

computational efficiency  

[27, 29]. 

of full FEM in multi-step or 

multi-stage processes  [41, 

53]. 

Integration 

Complexity 

There is broad recognition 

of the benefits of integrating 

multi-scale, multi-physics, 

and data-driven approaches 

(e.g., neuro-fuzzy, hybrid 

twin frameworks) to 

improve modeling fidelity 

and adaptability [15, 21, 

23]. FEM frameworks are 

often coupled with ML for 

constitutive modeling or 

residual stress prediction  

[11, 44, 49]. 

Complexity varies 

considerably; some studies 

present highly integrated 

frameworks (e.g., hybrid 

twin adaptive systems) [15], 

whereas others focus on 

more conventional FEM or 

ML standalone approaches  

[54, 55]. The degree of 

integration with 

microstructural evolution 

models or electromagnetic 

effects also differs  [5, 56, 

57]. 

Variation arises from the 

targeted process type, 

computational resource 

availability, and research 

maturity. More complex 

integration is common in 

recent studies aiming for 

industrial applicability 

and real-time control. 

Technological 

Adaptability 

Emerging technologies like 

cloud-based simulation 

platforms and AI-assisted 

optimization are 

increasingly integrated, 

facilitating multi-objective, 

real-time, and adaptive 

simulations [12, 15, 16].  

The use of ANN and deep 

learning for predictive 

Some studies reflect limited 

implementation of cloud or 

adaptive techniques due to 

computational constraints or 

focus on offline simulations  

[2, 43, 52]. Differences in AI 

adoption levels and real-time 

adaptability are evident  [1, 

26]. 

Disparities are linked to 

the developmental stage 

of the technology, 

industrial readiness, and 

the specific forming 

processes studied. 

Advances in 

computational power and 

data availability 

influence adaptability. 
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modeling is widely 

supported  [9, 10, 34]. 

Practical 

Applicability 

There is frequent reporting 

of successful validation 

against experimental data 

and industrial case studies, 

especially for sheet metal 

forming and hot stamping  

[12, 18,19, 31, 39]. FEM 

and ML models have been 

implemented in automotive 

and aerospace 

manufacturing contexts  [1, 

58, 59]. 

Some studies highlight 

challenges in translating 

modeling advances to 

industrial practice, citing 

complexity, high 

computational costs, and 

model calibration 

difficulties [2, 13, 30]. 

Contrastingly, older studies 

focus more on 

methodological 

development than on direct 

industrial application  [40]. 

Practical application 

varies due to differences 

in model maturity, 

computational resources, 

and the extent of 

experimental validation. 

Industry-specific 

constraints and process 

variability also influence 

adoption. 

 

Theoretical and Practical Implications 

The infusion of machine learning (ML) algorithms, especially artificial neural network (ANN) 

models, into processing entailed that the modelling of metal forming processes represents a 

significant theoretical advancement. These approaches enhance the predictive accuracy of 

complex phenomena such as springback, thinning, and microstructural evolution, surpassing 

traditional constitutive models by capturing nonlinearities and discrete behaviours more 

effectively [9, 11, 17]. The development of hybrid modelling frameworks that couple finite 

element methods (FEM) with data-driven and multi-physics metal forming techniques gives us a 

broader picture of the metal forming processes. This is a multi-scale and multi-physics integration 

that allows for simultaneous consideration of mechanical, thermal, and microstructural effects, 

advancing theoretical models beyond constitutive classical continuum mechanics [5, 21, 22]. The 

advancement of theoretical models and optimisation algorithms, such as sequential approximate 

optimisation and metamodel-based strategies in the surrogate models, has also enhanced the 

intensity of solving complicated inverse and multi-objective problems in metal forming. These 

approaches solve some of the problems of computational cost and model reliability and lead to 
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more assured and quicker convergence to good models [17, 20, 52]. Adaptive remeshing and 

meshfree techniques are taken care of to solve numerical issues that pertain to mesh distortion and 

large plastic deformations during a metal forming process. The advancements the benefits of these 

advancements enhance the stability and precision of simulations, which reinforces the theoretical 

basis of simulations of the highly nonlinear and dynamic forming processes [36, 37, 41]. Thermo-

magneto-mechanical frameworks of electromagnetic metal forming have advanced with fully 

coupled frameworks and have disseminated the theoretical knowledge of contact-free high-speed 

forming technologies. The simulations in the three-dimensional context become even more 

realistic with the help of advanced numerical methods, which include Nedelec elements and ALE 

formulations [57, 60].\ 

 

Practical Implications 

The application of ML and hybrid modelling techniques in industrial metal forming processes 

facilitates improved product quality and critical cost savings that were once associated with trial-

and-error with process control, defect prediction and optimisation. An example is that ML models 

have been demonstrated to be used to predict formability and optimise process parameters in sheet 

metal forming and hot stamping, and have practical application in manufacturing efficiency [9, 19, 

39]. Knowledge-based finite element simulation tools and platforms permit cloud-based real-time 

multi-objective simulation of processes and are available to researchers and industry personnel. 

Such platforms facilitate the integrated design and optimisation of processes and shorten the 

development lead times, and drive digitalisation of the metal forming industries [12, 16]. 

Combined optimization strategies that involve FEM with genetic algorithms, response surface 

methodologies and surrogate models have been found effective in industry, e.g. optimization of 

the draw bead force and die design. The methods help in cost savings and enhanced flexibilities of 

forming operations, which encourages manufacturing engineers to employ the methods in 

production [24, 31, 61]. By performing process simulations with the microstructural evolution 

model, a more accurate prediction of the final material properties may be achieved and more 

tailored process designs may be pursued that satisfy a specific set of mechanical and metallurgical 

properties. This allows the creation of new high performance high-strength steels and alloys that 

are optimized [4, 6, 62]. Higher fidelity friction model and adaptivity mesh techniques give better 

accuracy in simulations made under realistic boundary conditions making process prediction and 
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the determination of tool life more reliable. These technologies have immediate effect on industrial 

forming processes, especially bulk and hot forming processes [35, 37]. The proven efficiency of 

hybrid and AI-assisted modelling techniques to decrease the calculation time and enhance the 

prediction performance promotes the future practice within the industry, which may result in more 

cost-efficient manufacturing processes with reduced material use and energy spending [29, 44, 

63].  

 

CONCLUSION 

The collective literature on computational modeling of metal forming illustrates a robust and 

rapidly evolving domain driven by the integration of advanced finite element methods, machine 

learning techniques, and hybrid modeling frameworks. The body of work consistently underscores 

the foundational role of finite element analysis as a precise and versatile tool for simulating 

complex metal forming processes, capable of capturing detailed thermo-mechanical and 

microstructural phenomena. However, the computational intensity and challenges in mesh 

handling and contact modeling inherent to FEM have motivated the incorporation of surrogate 

models, adaptive remeshing, and algorithmic innovations to enhance simulation efficiency and 

stability. Machine learning and artificial intelligence have emerged as powerful complements to 

physics-based models, particularly excelling in predictive tasks such as defect detection, 

formability assessment, and microstructural evolution. Neural networks, especially deep learning 

and convolutional architectures, demonstrate superior nonlinear approximation capabilities that 

reduce iteration counts and computational burdens in optimization workflows. Nevertheless, their 

dependence on extensive, high-quality datasets and limited interpretability presents ongoing 

obstacles, restricting their direct applicability across varied materials and process conditions 

without substantial retraining or hybridization with physical models. 

Hybrid and multi-scale modeling approaches bridge the macro-scale deformation behavior with 

microstructural and metallurgical transformations, thereby enhancing the fidelity of predictions 

related to mechanical properties and defect formation. These approaches, while promising, remain 

complex and computationally demanding, with integration and validation challenges that limit 

widespread industrial deployment. The coupling of FEM with AI-driven surrogate models and 

optimization algorithms, including genetic algorithms and multi-fidelity metamodels, has proven 
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effective in balancing accuracy with computational efficiency, enabling faster convergence toward 

optimal process parameters and robust designs. 

Technological advancements such as cloud-based simulation platforms and hybrid twin 

frameworks facilitate scalable, real-time, and adaptive modeling environments that support 

collaborative research and industrial implementation. These platforms, combined with advances 

in meshfree methods, advanced friction modeling, and automated mesh generation, contribute to 

enhanced simulation realism and usability. However, data security, interoperability, and sensor 

integration issues present barriers to seamless adoption. 

Practically, the research demonstrates significant strides in reducing trial-and-error 

experimentation, lowering costs, and shortening development cycles through validated models 

applied across automotive, aerospace, and manufacturing industries. Efforts to democratize 

optimization tools for non-specialists further bolster industrial uptake. In summary, while 

computational modeling of metal forming has achieved notable theoretical and practical advances, 

future research must focus on overcoming data and integration challenges, improving model 

generalizability, and expanding the robustness and accessibility of hybrid and AI-enhanced 

simulation frameworks to fully realize the digital transformation potential in metal forming 

processes. 
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