Nigerian Research Journal of Chemical Sciences (ISSN: 2682-6054) Volume 10, Issue 1, 2022

Evaluation of Metal Levels in Water Samples of Some Weapon-Bombarded Areas in

Borno State, Nigeria

*¹Ewim Perpetual and ¹Jimoh Wahab

¹Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Kano, Kano State, Nigeria *Corresponding Author: nkpeppy@gmail.com

ABSTRACT

A JOURNAL O

Heavy metal levels in water samples in some war zones of Borno State in Nigeria were evaluated. A total of 155 water samples were evaluated using Microwave Plasma Atomic Emission Spectrophotometer. The levels of these metals: Cd, Ni, Sb, Co, Pb, Mg, Mn and Cr, in water were determined. The result in $\mu g/L$ showed that Cd level ranged from 0.00 to 15.38 ± 0.18 , Ni:0.00 ± 0.00 to 12.65 ± 0.13 , Co:0.04 ± 0.01 to 0.713 ± 0.00 , Pb:0.00 to 4.825+0.112, Mg: 8.928±0.066 to 471.30±2.072, Mn:0.250±0.00 to 389.6±56.83 and Cr:0.00 to 37.43+0.00. Sb was below detection limit. The descending order of the metal concentrations in the water samples were Cd > Mn > Ni > Pb > Co > Mg > Cr > Sb. A strongly positive correlation exhibited between Cd versus Ni, Co and Cr at 0.01 levels (2-tailed) as well as Cd versus Mn at 0.05 (2-tailed). Similarly, Ni showed strongly positive correlation with Cd, Co, Mg, Mn and Cr at 0.01 (2-tailed). Pb showed strongly positive correlation with Ni, Mn, Co at 0.01 (2tailed) and weakly with Pb. Mn showed strongly positive correlation with Ni, while Cr showed strongly positive correlation with Cd, Ni, Co, Mg, and Mn at 0.01 level (2-tailed). The data indicated that the metals levels in the study areas were higher than those from the control zone. The result was found in some cases to be above the acceptable values for the WHO. The result of this study will be useful for the management and planning of the possible remediation processes that can be employed in the study area.

Keywords: Heavy metals, Water, Borno State, Evaluation, Warring Areas, Weapons.

INTRODUCTION

Warfare is associated with significant heavy metal contamination of the environment, due to destruction of built infrastructure which consequently releases heavy metal. Also, direct contamination from exploded ordinance and leakage from unexploded ordinance form part of the environment degradation associated to warfare. Over the last century war and natural

processes have resulted in the release of large amount of toxic compounds into the biosphere. This toxic compound has led to the problem of environmental pollution and ecological degradation [1]

Heavy metals such Zn, Cu, Ni, Pb, and Cr are used extensively to coat bullets, missiles, gun barrels, and military vehicles (tanks, trucks and aircraft) [2]. Explosives harbor huge amounts of Pb and Hg [Mercury(II) fulminate] [3]. Zn, Cu, Ni, Co, Pb, and Cr are used to coat bullets, missiles, gun barrels, and military vehicles [4]. Antimony (Sb), are weapon priming compounds, [5]. In general, the use of heavy metals in weapons has increased since the end of World War II [2].

In Borno State, Nigeria, following the war, explosives and ammunitions released organic pollutants as well as toxic heavy metals into the environment. These would cause threat to the health of the animals and humans in the area. The North East has been the site of a massive environmental disruption by bombardments due to the use of bombs, bullets, improvised explosive devices (IEDs), rockets and other ammunition.

Metals are key components of bombs, bullets, and other weaponry [6]. It has been suggested that US military bases are among the most polluting operations on earth [7]. In 2009, the fight in Borno State sprang up. This later took a new turn in 2010 when the need for deployment of regimental weapon turned to deployment of armament weapons. The fight at the North East has been the sites for massive environmental disruption due to high caliber armaments in use. From 2010 till date, the war in Borno State have led to dropping of large number of bombs, rocket, cannons, and bullet on the land, which are similar situations as seen in the US fight against insurgency. Thus, the determination of the amount of cadmium, chromium, antimony, manganese, nickel, antimony, copper and lead in water samples of the war-torn areas has become necessary. Also the study will appreciate the effect of the war on the environment. It is expected that the troops will experience health challenges arising from infected injuries that would occur due to anti-microbial drug resistance caused by metals.

The hypothesis that increased war activity coincides with increased metal levels in war environment is investigated by this research work. Therefore, the aim of the research is to determine the level of heavy metals (Cd, Ni,Co, Pb, Sb, Mg, Mn and Cr)levels in war zones water samples from Borno State Nigeria using Microwave Plasma Atomic Emission

Spectrophotoscopy (MPAES). Hence the objectives of this research are:(1) To determine the level of heavy metals (Cd, Ni,Co, Pb, Sb, Mg, Mn and Cr) in water from these warring zones of Borno State. (2) To provide information on the state of water used for agricultural and domestic purposes in those selected warring areas of the research by subjecting the result of the research from the water samples to statistical analysis of variance (ANOVA) and Tukey post hoc test (3) To determine their correlation coefficient and finally, (4) To make appropriate recommendations based on the outcome of the research study on ways of improving the present situation.

MATERIALS AND METHODS

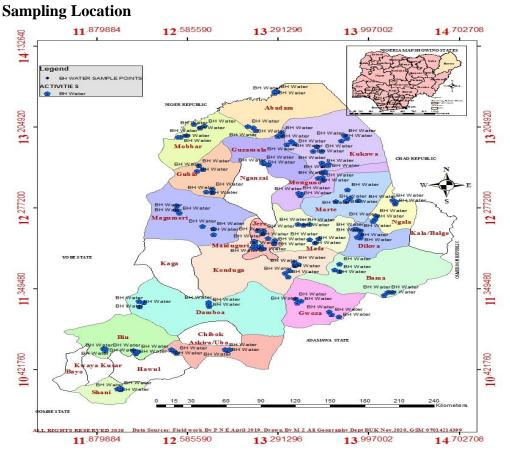


Fig 1: Map of the Study Area Showing Sampling Points for Water.

Sampling areas for water

Borno State is a state in North-Eastern part of Nigeria. Its capital is Maiduguri. Borno State has Twenty-Seven Local Government Areas (LGAs). The research work for water sampling is from 21 Local Government Areas of Borno State. These areas (Abadam, Bama, Biu, Damboa, Dikwa, Gubio, Guzamala, Kukawa, konduga, Mongonu, Jere, Mafa, Magumeri, Marte,

Maiduguri, Mobbar, Marte Ngala, Baga, Shani and Gwoza) have experienced high military bombardment and explosions with the exception of Shanli LGA hence the reason why Shanli is taken as the control zone.

Table 1 is the water sample areas and sample code as seen below:

Wate	r Sample 1 from Ma	arte Borehol	e Sampling Ar	ea	Water Sample 2 from Mafa Sampling Area						
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source		
1.	MAR HQ BH	MAR 1	WS1	BOREHOLE	2	MAF HQ	MAF 1	WS6	BOREHOLE		
	MAR BH SEC A	MAR 2	WS2			MAF SEC A	MAF 2	WS7			
	MAR BH SEC B	MAR 3	WS 3			MAF SEC B	MAF 3	WS8	_		
	MAR BH SEC C	MAR 4	WS 4			MAF C	MAF 4	WS9			
	MAR BH SEC D	MAR 5	WS 5			MAF D	MAF 5	WS10			
Water	r Sample 3 from Je	re Sampling	Area		Water	Sample 4 from Ko	nduga Sam	oling Area			
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source		
3.	105 CG HQ BH	JER 1	WS11	BOREHOLE	4.	LOWCOST SEC 1	KON1	WS16	RIVER		
	105 CG ACCM BH	JER 2	WS12	_		LOWCOST SEC2	KON 2	WS17	_		
	PRYCG BH	JER 3	WS13	_		LOWCOST SEC3	KON 3	WS18	-		
	PRYCG BH	JER 4	WS14	_		10 HSE UNIT SEC 1	KON 4	WS19	-		
	GOM	JER 5	WS15			10 HSE UNIT SEC 2	KON 5	WS20			
Water	r Sample 5 from Bar	na Sampling A	rea		Water S	Sample 6 from Mobb	ar Sampling A	rea			
S/N	Area	Sample	General	Source	S/N	Area	Sample	General	Source		
5.	BAM IDP	Code BAM 1	Code WS21	BOREHOLE	6.	DSK HQ	Code DSK 1	Code WS26	BOREHOLE		
	BAM NAF	BAM 2	WS22			DSK SEC 1	DSK 2	WS27	_		
	BAK IDP P1	BAM 3	WS23	-		DSK SEC 2	DSK 3	WS28	-		
	BAK IDP P2	BAM 4	WS24	-		DSK SEC 3	DSK 4	WS29	-		
	BAKARMY	BAM 5	WS25	-		DSK SEC 4	DSK 5	WS30	-		
Water	Sample 7 from Mong		Area		Water S	Sample 8 from Dalori		ling Area			
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source		
7.	MON HQ	MON 1	WS31	BOREHOLE	8.	IDPPNT 1	DAL 1	WS36	BOREHOLE		
	MON SEC 3	MON 2	WS32			IDP PNT 2	DAL2	WS37	1		
	MON SEC 2	MON 3	WS33			IDP PNT 3	DAL 3	WS38	1		
	MON SEC 3	MON 4	WS34			IDP PNT 4	DAL 4	WS39	\neg		

Table 1: Water Sampling Sources and Codes

	MON SEC 4	MON 5	WS35			IDP MED	DAL 5	WS40	_
Water	Sample 9 from Baga S	ampling Area			Water S	ample 10 from Maid	luguri Samplin	ıg Area	
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
9.	BAG SEC 1	BAG 1	WS41	BOREHOLE	10.	MAI RGE	MDG 1	WS46	BOREHOLE
	BAG SEC 2	BAG 2	WS42			OFFR ACCM	MDG 2	WS47	-
	BAG SEC 3	BAG 3	WS43			7 DIV	MDG 3	WS48	_
	BAG SEC 4	BAG4	WS44			SOGAACCM	MDG 4	WS49	_
	BAG SEC 5	BAG 5	WS45			ART HQ	MDG 5	WS50	-
Water	Vater Sample 11 from Gwoza Sampling Area /N Area Sample General Source				Water S	ample 12 from Dam	boa River Sam	pling Area	
S/N	-				S/N	Area	Sample Code	General Code	Source
11.	PUK RI	GWO 1	WS51	BOREHOLE	12.	DAM R	DAM 1	WS56	RIVER
	PUK R2	GWO 2	WS52			DAM R	DAM 2	WS57	1
	PUK R3	GWO 3	WS53			DAM R	DAM 3	WS58	
	PUK R4	GWO 4	WS54			DAM R	DAM 4	WS59	-
	PUK R5	GWO 5	W855			DAM R	DAM 5	WS60	_
Water	Sample 13 from from	Biu Sampling	Area		Water S	ample 14 from Dikw	a Sampling A	rea	
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
13.	BIU HQ	BIU 1	WS61	BOREHOLE	14.	GAJI 1	DIK 1	WS66	RIVER
	BIU SLD ACCM	BIU 2	WS62			GAJI 2	DIK 2	WS67	
	BIU OFFR ACCM	BIU 3	WS63	_		GAJI 3	DIK 3	WS68	-
	BIU CLS	BIU 4	WS64	1		GAJI 4	DIK 4	WS69	1
	BIU SEC	BIU 5	WS65	1		GAJI 5	DIK 5	WS70	1
Water	Sample 15 from Shanl						•	•	•
0.01	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
S/N				1					BOREHOLE
	SHAN1	SHAN1	WS76	BOREHOLE					
S/N 15.	SHAN1 SHAN 2	SHAN 2	WS76 WS77	BOREHOLE					_
				BOREHOLE					-
	SHAN 2	SHAN 2	WS77	BOREHOLE					-

The control sample from Shanli was obtained at a borehole in SHANLI LGA of Borno State were no launching of ammunitions/explosives had occurred.

Water Sample 16 from Abadam Borehole Sampling Area				Water Sample 17 from Askiri /Uba Sampling Area					
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
16.	ABD HQ BH	ABD 1	WS1	BOREHOLE	17.	ASK HQ	ASK 1	WS6	BOREHOLE
	ABD BH SEC A	ABD 2	WS2			ASK SEC A	ASK 2	WS7	

	ABD BH SEC B	ABD 3	WS 3			ASK SEC B	ASK 3	WS8	
	ABD BH SEC C	ABD 4	WS 4	_		ASK C	ASK 4	WS9	
	ABD BH SEC D	ABD 5	WS 5	_		ASK D	ASK 5	WS10	_
Water	Sample 18 from Ngala	a Sampling Are	a		Water S	ample 19 from Biu S	Sampling Area		
S/N	Area	Sample	General	Source	S/N	Area	Sample	General	Source
18.		Code NGA 1	Code WS11	BOREHOLE	19.	Biu 1	Code BUU 1	Code WS16	RIVER
	NGA HQ BH								
	NGA BH 1	NGA 2	WS12			Biu 2	BUU 2	WS17	
	NGA BH 2	NGA3	WS13			Biu 3	BUU 3	WS18	
	NGA BH 3	NGA 4	WS14	-		Biu 4	BUU 4	WS19	
	NGA BH 4	NGA 5	WS15			Biu 5	BUU 5	WS20	-
Water	Sample 20 from Mag	umeri Samplin	g Area		Water S	ample 21 from Guz	amala Sampling	Area	
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
20.	MAG 1	MAG 1	WS21	BOREHOLE	21.	GUZML1	GUZML1	WS26	BOREHOLE
	MAG2	MAG2	WS22			GUZML2	GUZML2	WS27	
	MAG3	MAG3	WS23			GUZML3	GUZML3	WS28	1
	MAG4	MAG4	WS24			GUZML4	GUZML4	WS29	-
	MAG5	MAG5	WS25	_		GUZML5	GUZML5	WS30	
						GOZMES	GUZML5	w530	
Water	Sample 22 from Kond	luga Sampling	Area		Water S	ample 23 from Dam			
	Sample 22 from Kond Area	luga Sampling Sample Code	Area General Code	Source	Water S S/N				Source
S/N		Sample	General	Source BOREHOLE		ample 23 from Dam	boa Sampling A Sample	rea General	Source BOREHOLE
S/N	Area	Sample Code	General Code		S/N	ample 23 from Dam Area	boa Sampling A Sample Code	rea General Code	
S/N	Area KON HQ KON LOWCOST	Sample Code KOND 1	General Code WS31		S/N	ample 23 from Dam Area DAM PNT 1	boa Sampling A Sample Code DAMB 1	rea General Code WS36	
S/N	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST	Sample Code KOND 1 KOND 2	General Code WS31 WS32		S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2	boa Sampling A Sample Code DAMB 1 DAMB 2	rea General Code WS36 WS37	
Water S/N 22.	Area KON HQ KON LOWCOST 1 KON LOWCOST 2	Sample Code KOND 1 KOND 2 KOND 3	General Code WS31 WS32 WS33		S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3	rea General Code WS36 WS37 WS38	
S/N 22.	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3	Sample Code KOND 1 KOND 2 KOND 3 KOND 4 KON 5	General Code WS31 WS32 WS33 WS34 WS35		S/N 23.	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 4	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 4 DAMB 5	rea General Code WS36 WS37 WS38 WS39 WS39	
S/N 22. Water	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4	Sample Code KOND 1 KOND 2 KOND 3 KOND 4 KON 5 Za Sampling Ar Sample	General Code WS31 WS32 WS33 WS34 WS35 rea General		S/N 23.	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 4 DAM PNT 5	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Are Sample	rea General Code WS36 WS37 WS38 WS39 WS40 a General	
<mark>S/N</mark> 22. Water S/N	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw	Sample Code KOND 1 KOND 2 KOND 3 KOND 4 KON 5	General Code WS31 WS32 WS33 WS34 WS34 WS35	BOREHOLE	S/N 23. Water S	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 4 DAMB 5	rea General Code WS36 WS37 WS38 WS39 WS40 a	BOREHOLE BOREHOLE Source
S/N 22. Water S/N	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5	General Code WS31 WS32 WS33 WS34 WS35 WS35 Code	BOREHOLE	S/N 23. Water S S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 4 DAMB 5 io Sampling Aree Sample Code	rea General Code WS36 WS37 WS38 WS38 WS39 WS40 a General Code	BOREHOLE
<mark>S/N</mark> 22. Water S/N	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 Code DIKW 1	General Code WS31 WS32 WS33 WS34 WS34 WS35 Code WS41	BOREHOLE	S/N 23. Water S S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Are Sample Code GUB 1	rea General Code WS36 WS37 WS38 WS39 WS40 a General Code WS46	BOREHOLE BOREHOLE Source
<mark>S/N</mark> 22. Water S/N	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1 DIKW SEC 2	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 Xa Sampling Ar Sample Code DIKW 1 DIKW2	General Code WS31 WS32 WS33 WS34 WS34 WS35 Tea General Code WS41 WS42	BOREHOLE	S/N 23. Water S S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1 GUB 2	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Are Sample Code GUB 1 GUB 2	rea General Code WS36 WS37 WS38 WS39 WS40 a General Code WS46 WS47	BOREHOLE BOREHOLE Source
S/N 22.	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1 DIKW SEC 2 DIKW SEC 3	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 KON 5 Sampling Ar Sample Code DIKW 1 DIKW2 DIKW3	General Code WS31 WS32 WS33 WS34 WS34 WS35 Code WS41 WS42 WS43	BOREHOLE	S/N 23. Water S S/N	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1 GUB 2 GUB 3	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Aree GUB 1 GUB 2 GUB 2 GUB 3	rea General Code WS36 WS37 WS38 WS39 WS40 WS40 a General Code WS46 WS46 WS47 WS48	BOREHOLE BOREHOLE Source
S/N 22. Water S/N 24.	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1 DIKW SEC 2 DIKW SEC 3 DIKW SEC4	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 KON 5 Za Sampling Ar Sample Code DIKW 1 DIKW2 DIKW3 DIKW4 DIKW5	General Code WS31 WS32 WS33 WS33 WS34 WS34 WS35 Code WS41 WS42 WS43 WS44 WS44 WS45	BOREHOLE	S/N 23. Water S S/N 25.	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1 GUB 2 GUB 3 GUB 4	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Aree Sample Code GUB 1 GUB 2 GUB 3 GUB 4 GUB 5	rea General Code WS36 WS37 WS38 WS39 WS40 a General Code WS46 WS46 WS46 WS47 WS48 WS49 WS50	BOREHOLE Source BOREHOLE
S/N 22. Water S/N 24. Table	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 3 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1 DIKW SEC 2 DIKW SEC 3 DIKW SEC 4 DIKW SEC 5	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 KOND 4 KON 5 Code DIKW 1 DIKW 1 DIKW 2 DIKW 3 DIKW 3 DIKW 5 From Mobbar 3	General Code WS31 WS32 WS33 WS34 WS34 WS34 WS35 WS35 WS35 WS41 WS41 WS41 WS42 WS42 WS43 WS44 WS45 Sampling Area General	BOREHOLE	S/N 23. Water S S/N 25.	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 2 DAM PNT 3 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1 GUB 2 GUB 3 GUB 4 GUB 5	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Are GUB 1 GUB 1 GUB 2 GUB 1 GUB 2 GUB 3 GUB 4 GUB 5 from Marte Riv	rea General Code WS36 WS37 WS38 WS39 WS39 WS40 a General Code WS46 WS46 WS46 WS46 WS47 WS48 WS49 WS49 WS50 rer Sampling A General	BOREHOLE Source BOREHOLE
S/N 22. Water S/N 24.	Area KON HQ KON LOWCOST 1 KON LOWCOST 2 KON LOWCOST 3 KON LOWCOST 4 Sample 24 from Dikw Area DIKW SEC 1 DIKW SEC 2 DIKW SEC 3 DIKW SEC 5 26: Water Sample 26	Sample Code KOND 1 KOND 2 KOND 3 KOND 3 KOND 4 KON 5 Code DIKW 1 DIKW 1 DIKW 2 DIKW 3 DIKW 4 DIKW 5	General Code WS31 WS32 WS33 WS33 WS34 WS34 WS35 Tea General Code WS41 WS42 WS43 WS44 WS44 WS45 Sampling Area	BOREHOLE Source BOREHOLE BOREHOLE	S/N 23. Water S S/N 25. Table 2	ample 23 from Dam Area DAM PNT 1 DAM PNT 2 DAM PNT 3 DAM PNT 4 DAM PNT 5 ample 25 from Gub Area GUB 1 GUB 2 GUB 3 GUB 4 GUB 5 7: Water Sample 27	boa Sampling A Sample Code DAMB 1 DAMB 2 DAMB 3 DAMB 3 DAMB 4 DAMB 5 io Sampling Are Sample Code GUB 1 GUB 2 GUB 3 GUB 4 GUB 5 from Marte Riv	rea General Code WS36 WS37 WS38 WS39 WS39 WS40 a General Code WS46 WS46 WS46 WS47 WS48 WS49 WS49 WS50	BOREHOLE BOREHOLE BOREHOLE BOREHOLE BOREHOLE BOREHOLE

	MOBR R3	MOBR3	WS53			MARTE R 3	MARTE 3	WS58	
	MOBR R4	MOBR4	WS54	_		MARTE R 4	MARTE 4	WS59	
	MOBR R5	MOBR5	WS55	_		MARTE R 5	MARTE 5	WS60	_
Table	28: Water Sample 2	8 from from Ma	iduguri Samlinş	g Area	Water S	ample 29 from Mafa	a Sampling Area	1	
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
28.	MAID PNT 1	MAID 1	WS61	RIVER	29.	MAFFF 1	MAFFF 1	WS66	RIVER
	MAID PNT 2	MAID 2	WS62	_		MAFFF2	MAFFF 2	WS67	_
	MAID PNT 3	MAID 3	WS63	_		MAFFF 3	MAFFF 3	WS68	_
	MAID PNT 4	MAID 4	WS64	_		MAFFF4	MAFFF4	WS69	_
	MAID PNT 5	MAID 5	WS65	_		MAFFF 5	MAFFF 5	WS70	
Water	Sample 30 from Ma	gumeri Sampling	g Area		Water S	ample 31 from Baga	a Sampling Area	1	
S/N	Area	Sample Code	General Code	Source	S/N	Area	Sample Code	General Code	Source
30.	MAGU 1	MAGU 1	WS76	BOREHOLE	31.	BAGA 1	BAGG 1	WS76	BOREHOLE
	MAGU 2	MAGU 2	WS77			BAGA 2	BAGG 2	WS77	_
	MAGU 3	MAGU 3	WS78	-		BAGA3	BAGG3	WS78	
	MAGU 4	MAGU 4	WS79	-		BAGA4	BAGG4	WS79	_
	MAGU 5	MAGU 5	WS80	_		BAGA5	BAGG5	WS80	_

Water samples from borehole and river were collected and labeled as WS 1 to WS 155. The samples from the river were collected by grab sampling technique [9]. This was done by lowering the sampling bottle with a rope knotted at the neck of the bottle to ensure that the sample collected was not from the surface at locations where anthropogenic activities were carried out. Water was collected from drilled wells and hand dug wells after pumping for 5 - 10 minutes [9]. The borehole samples were sourced from Abadam, Bama, Biu, Damboa, Dikwa, Gubio, Guzamala, Kukawa, Konduga, Mongonu, Jere, Mafa, Magumeri, Marte, Maiduguri, Mobbar , Ngala, Baga, Shanli and Gwaoza. While for the river samples were sourced from Askira/Uba, Biu, Damboa, Dikwa,Gubio, Mafa, Magumeri, Marte, Mobbar , and Baga.

The samples were collected in September 2019 during rainy season and airlifted to Kano State. The experiments were carried out in the Chemistry Laboratory, Bayero University Kano (BUK), Kano State, Nigeria.

Cleaning of container for water analysis

All glass wares and the polyethylene plastic containers for collection of water sample were cleaned by washing in non- ionic detergent, and soaked in 0.5M HNO₃ for 24 hours and finally rinsed with distilled water severally prior to usage [8].

Water Sample Pretreatment

The samples for heavy metals determination were collected in 5-liter cleaned plastic containers and preserved by the addition of 5 cm^3 concentrated HNO₃ (Specific gravity 1.41) to prevent the metals from adhering to the walls of the containers used in sampling [9].

Digestion of Water Samples

A quantity of the filtered water sample was evaporated to about 100 cm³ by transferring 500 cm³ of the water into 1-liter pyrex glass beaker [9]. The sample was placed on a hot sand bath and evaporated. The process was repeated for about 8 times whereby all the water has been transferred into the pyrex beaker. Finally, the water was allowed to evaporate to about 100 cm³ volumes and the heating source was removed. Then 25 cm³ of 0.25M HNO₃ was added and allowed to boil at 85 °C until a clear solution was obtained. The boiling was continued until a minimum amount of sample remained in the beaker. The digested sample was allowed to cool and the sample rinsed with distilled water before filtering using ash less filter paper. It was then made up to 50cm³ marks in 50cm³guaged plastic container with deionised water [9]. This solution was then used for the heavy metal analysis using MPAES (Agilent technologies 4210). The MPAES machine is located at the Centre for Dry Land, Bayero University, Kano, (BUK) New site and the metal analysis was carried out in the Center for Dry Land laboratory, BUK new site. The metals which were investigated using this method are Cd, Ni, Sb, Co, Pb, Mg, Mn and Cr.

Conversion of
$$(mgL^{-1})$$
 to $\mu gL^{-1} = (mgL^{-1}) \ge 1000 = \mu gL^{-1}$
Metal $(mgL - 1) = \frac{\mu gL - 1 \text{ of metal } \ge D}{1000}$
Where;
D (dilution factor) = $\frac{\text{Total final volume in ml}}{\text{ml of sample}}$

Preparation of Blank Solution

This consists of carrying out a separate determination, the sample being omitted under exactly the same experimental conditions as employed in the actual analysis of the sample. The aim is to find out the effect of the impurities introduced through the reagents and vessels [9]. Contamination and variation in the blank values due to interfering species, limit the determination of metal at trace levels. The interfering species may give rise to a response from the measuring system and/or mask the analyte from effective participation in the measuring process [9].

RESULT AND DISCUSSION

Table 2: Validation of Results

Serial No.	Elements	True Value	Mean Measured	Blank value	Mean Error	Relative Error	Percentage Error (%)
			Value				
1	Cd	10	10.30	0.41	0.11	0.011	1.10
2	Mn	10	6.86	0.01	3.15	0.315	31.50
3	Sb	10	9.26	0.00	0.740	0.0740	7.40
4	Mg	10	11.43	1.52	0.09	0.009	0.90
5	Ni	10	13.38	0.00	3.38	0.338	33.80
6	Co	10	5.36	0.00	4.64	0.464	46.40
7	Cr	10	9.99	0.00	0.01	0.001	0.10
8	Pb	10	10.60	0.01	0.59	0.059	5.9

	Source	Cd	Ni	Sb	Со	Pb	Mg	Mn	Cr
	MART BH	ND	0.25 <u>+</u> 0.00	ND	0.53 <u>+</u> 0.01	2.93 <u>+</u> 0.31	113.3 <u>+</u> 2.61	75.60 <u>+</u> 0.28	0.63 <u>+</u> 0.00
	MAF BH	ND	ND	ND	0.22 ± 0.01	ND	55.23+0.49	0.25+0.00	1.13+0.00
	GER BH	ND	0.25+0.00	ND	0.163 ± 0.00	1.5+0.00	31.15 <u>+</u> 0.47	0.50 <u>+</u> 0.00	ND
	KON R	ND	ND	ND	0.29 ± 0.02	ND	307.3 <u>+</u> 1.92	0.55 <u>+</u> 0.07	0.5 ± 0.00
	BAM BH	ND	0.13+0.00	ND	0.27 <u>+</u> 0.01	0.73 <u>+</u> 0.10	54.98 <u>+</u> 0.89	4.33 <u>+</u> 0.07	0.875+0.00
	MOB BH	ND	ND	ND	0.017 <u>+</u> 0.007	0.2 <u>+</u> 0.068	14.975 <u>+</u> 0.16	2.776 <u>+</u> 0.058	ND
	MON BH	ND	0.25 <u>+</u> 0	ND	0.135+0.006	ND	334.7 <u>+</u> 1.41	7.38+0	0.75 <u>+</u> 0
	DAL BH	ND	ND	ND	0.285+0.006	4.825 <u>+</u> 0.112	206.7 <u>+</u> 1.86	2 <u>+</u> 0	5.75 <u>+</u> 0
	BAG BH	ND	ND	ND	0.14 <u>+</u> 0.00558	0.125 <u>+</u> 0	8.925 <u>+</u> 0.068	0.38 <u>+</u> 0	ND
	MDG BH	ND	0.125+0	ND	0.3025+0.0056	ND	39.975+0.437	32.352 <u>+</u> 0.165	2.0 <u>+</u> 0
	GWOZ BH	ND	1.375 <u>+</u> 0	ND	0.0896+0.017	ND	430.55 <u>+</u> 1.19	364.75 <u>+</u> 1.69	4.025 <u>+</u> 0.056
	DAM R	ND	0.25+0	ND	0.325+0.013	ND	299.025+5.806	3.38+0	18.4+0.056
;	BIU BH	ND	0.5+0	ND	0.1225 ± 0.0105	ND	471.3 <u>+</u> 2.072	127.802 ± 0.14	2.1 <u>+</u> 0.068
	DIK R	ND	ND	ND	0.22 <u>+</u> 0.007	ND	39.625 <u>+</u> 0.62	1.13 <u>+</u> 0	1.125 <u>+</u> 0
;	SHAN BH	ND	ND	ND	0.275 <u>+</u> 0	ND	137.22 <u>+</u> 2.199	2.38 <u>+</u> 0	0.125 <u>+</u> 0
i i	ABD BH	4.33 <u>+</u> 0.063	0.25 <u>+</u> 0	ND	0.3375 <u>+</u> 0	ND	23.251 <u>+</u> 0.23	50.28 <u>+</u> 0.164	1.5 <u>+</u> 0
,	ASK R	3.68 <u>+</u> 0.05	0.5 <u>+</u> 0	ND	0.213 <u>+</u> 0	0.625 <u>+</u> 0	162.38 <u>+</u> 0	10.38 <u>+</u> 0	4.452 <u>+</u> 0
	NGA BH	4.31 <u>+</u> 0.146	0.125 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	45.32 <u>+</u> 0.49	0.5 <u>+</u> 0	0.875 <u>+</u> 0
	BUU R	15.38 <u>+</u> 0.177	12.65 <u>+</u> 0.13	ND	0.713 <u>+</u> 0	ND	256.025 <u>+</u> 3.87	124.36 <u>+</u> 0.34	37.428 <u>+</u> 0.533
1	MAG R	4.03 <u>+</u> 0.105	ND	ND	0.4375 <u>+</u> 0.056	ND	62.6 <u>+</u> 0.789	2.13 <u>+</u> 0	0.125 <u>+</u> 0
	GUZML BH	4.08 <u>+</u> 0.143	0.125 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	26.06 <u>+</u> 0.53	2.25 <u>+</u> 0	2.75 <u>+</u> 0
!	KON BH	2.68 <u>+</u> 0.619	0.25 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	10.998 <u>+</u> 0.163	17.178 <u>+</u> 0.065	11.654 <u>+</u> 0.054
	DAMB BH	4.65 <u>+</u> 0.163	0.125 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	79.45 <u>+</u> 2.524	6.75 <u>+</u> 0	2.5 <u>+</u> 0
	DIKW BH	5.6 <u>+</u> 0.271	0.125 <u>+</u> 0	ND	0.3375 <u>+</u> 0	ND	89.475 <u>+</u> 1.645	2.05 <u>+</u> 0.068	3.125 <u>+</u> 0
5	MARTE R	4.39 <u>+</u> 0.1	0.125 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	17.55 <u>+</u> 0.26	4.05 <u>+</u> 0.068	0.5 <u>+</u> 0
5	MOBR R	3.28 <u>+</u> 0.104	0.13 <u>+</u> 0	ND	0.213 <u>+</u> 0	ND	17 <u>+</u> 0.364	48.602 <u>+</u> 0.59	6.6 <u>+</u> 0.056
	MARTE R	6.00 <u>+</u> 0.319	0.375 <u>+</u> 0	ND	0.4625 <u>+</u> 0	ND	108.45 <u>+</u> 2.70	111.925 <u>+</u> 0.140	3.13 <u>+</u> 0
5	MAID R	4.98 <u>+</u> 0.445	0.125 <u>+</u> 0	ND	0.1125 <u>+</u> 0.0559	2.7 <u>+</u> 0.056	144.825 <u>+</u> 2.01	1.00 <u>+</u> 0	ND
)	MAFF R	5.68 <u>+</u> 0.34	0.25 <u>+</u> 0	ND	0.3375 <u>+</u> 0	1.75 <u>+</u> 0	145.525 <u>+</u> 2.31	50.026 <u>+</u> 0.375	0.375 <u>+</u> 0
)	MAGU BH	5.30 <u>+</u> 0.142	0.125 <u>+</u> 0	ND	0.2125 <u>+</u> 0	ND	19.48 <u>+</u> 0.37	5.00 <u>+</u> 0	ND
l	BAGG R	5.6 <u>+</u> 0.104	0.125 <u>+</u> 0	ND	0.3375 <u>+</u> 0	ND	44.15 <u>+</u> 1.01	4.63 <u>+</u> 0	2.625 <u>+</u> 0
	WHO PERMISSIBLE LIMIT (µg/l)	3.0	6.0	6.0	50.0	10.0	20,000	100	50.0

Cadmium (Cd) in Water Sample

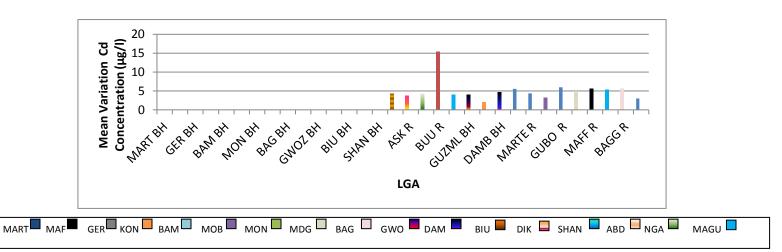


Fig. 2: Mean Variation of Cd Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 2 shows the mean values of Cd in the water samples for metal analysis and post hoc test readings. The results ranged from 0.00 to $15.38 \pm 0.18 \ \mu g/L$ with the highest concentration found in the samples collected from WS 19 ($15.38 \pm 0.18 \ \mu g/L$). and WS 27 ($6.00 \pm 0.319 \ \mu g/L$) (Table 3). WS 1 to WS 15 values were below detection limits (BDL). The mean Cd level of the water samples were all above the permissible limits of $3.0 \ \mu g/L$ set by WHO [10]. Tukey post hoc test revealed that the level of Cd in WS 1 -15 were statistically not significant as these were BDLs (Table 3)

Statistical analysis revealed that there was significant difference between levels of Cd in WS 22 and WS 26 at P<0.05. Similarly, the levels in WS 17 and 20 were not significant but were significantly lower compared to those of WS 21, WS 18 and WS 16. Those three were significantly lower than WS 25. Similarly, WS 25 were significantly difference from WS 23 which was lower than WS 28. WS 30 was significantly different from WS 24 which in turn was different from 31. Also levels of Cd in WS 29 were different from those of WS 27 and were lower than those of WS 19. The ANOVA for Pb in decreasing order in the sample is WS 19,>27>29>31, 24>28>23>25>16,18,21>20,27>26>22. While those of WS 1 – 14 are BDL Figure 2 shows that the mean values of Cd in both borehole and river water samples for metal readings and post hoc test respectively. The extremely high levels of Cd found in some samples in the area, could be attributed to the combustion of gasoline used in mortars and tanks deployed in war. Cd is found to be contained in gasoline [11]. In addition, the explosives of ammunition and bullets which release Cd must have largely contributed to the high level of Cd

in the environment. The levels of Cd in the water samples were above the limit permissible in water for use in both domestics and agricultural purposes [12]. The levels obtained for cadmium in all the sites (except WS 1- 15) were higher than those reported for Hengshishu wetland of Northern China [13]. However, the level of cadmium (0.029 mg/L) observed by Honggang *et al.* [14] were higher than values recorded in this study but were similar to the values reported by Yusuf *et al* [15]. Additionally, the levels of cadmium in this study were above those reported by Pavithrapriya. *et al.* [16] which ranged from 0.2mg/L to 0.7mg/L for Combatore in India. Concentration of cadmium in Maiduguri was found to be BDL to 0.07mg/L) [17] which is below the value obtained in this present study. The control was also found to be within the permissible limit of WHO [10]. The result showed that the Cd levels are building up due to the warring activities. The implication therefore is that the higher levels of Cd in the water samples can bioaccumulate in man and animals that consume the contaminated water in the war zones and can lead to nervous system break down [18].

Nickel in Water Samples

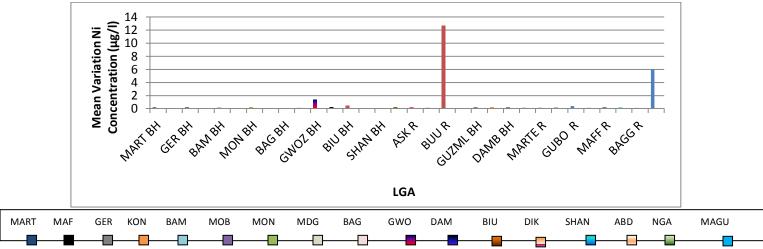
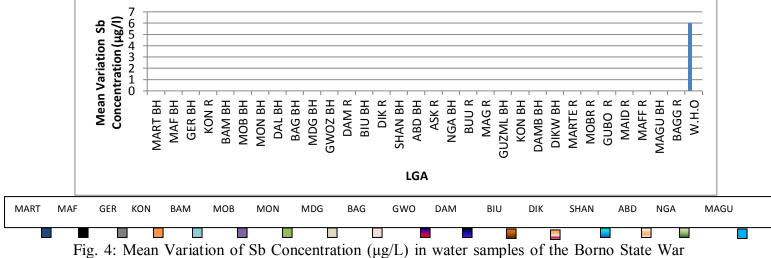
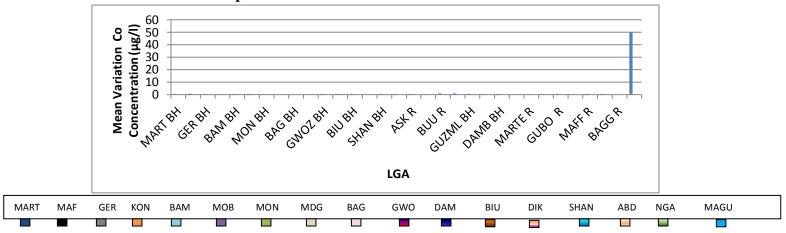



Fig. 3: Mean Variation of Ni Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 3 shows that the mean values of Ni in the water samples for metal analysis and post hoc test readings. The result ranged from 0.00 ± 0.00 to $12.65\pm0.13\mu$ g/L with the highest concentration found in the samples collected from WS 19. However, WS 2, 4, 6,8,9,14,15 and WS 20 had the lowest value and were below detection limits (Table 3). The mean Ni levels of all the water samples were all below permissible limit of 6.0μ g/L set by WHO [10] except WS19 Biu LGA ($12.65\pm0.13\mu$ g/L). Also sample from Gwoza (WS 11) was also high (1.40

 μ g/L) compared to other samples. The control was also found to be below detection limit of the machine.

Statistical analysis of the data tukey post hoc test revealed that the levels of Ni were significantly similar in WS 5,10,18,21,23,24,25,28,30 and 31 while others were slightly different at P<0.05. Analysis for Ni in decreasing order is WS 19>11>17>13>27>29, 22 16, 12, 7, 3, 1> 26, 31, 30, 28, 25, 24, 23, 21, 18, 10, 5. While sample 20, 15, 14, 8, 6, 4 were BDL of the machine. The bombardment of the farmlands with ammunition and explosives may be a contributing factor of Ni level. The mean Ni level in WS 19 is greater than the study by Hengshiu of Manyin [13]. However, the ranges for nickel reported ranged from $0.6 - 2.21 \mu gL^{-1}$ were above the average of those Ni found in the study [19]. The highest level of Ni determined in WS19 can be attributed to the several wars fought in Biu (12.65 μ g/L). However, the value of Ni level ($0.20 - 8.80 \mu$ g/L) recorded in Kubuwa [20] was higher than the concentration determined in this study. Though the level of Ni present in this study can bioaccumulate in the human brain and would affects nervous system [21]. The level of Ni (0.013μ g/L) determined in the study by Honggang [14] was similar to some of the lower limits of this study ($0.00 - 12.65 \mu$ g/L but Honggang result was below those determined by Priya study [22] which was 0.70μ g/L to 3.3μ g/L.



Antimony in Water Samples

Zones

Figure 4 shows that the mean values of Antimony (Sb) in the water samples for metal analysis were below detection limit of the machine. The result therefore suggested that the Sb do not

have significant presence in the water studied. Also in study of Odiba [23] Sb level was not detected (Table 3).

Cobalt in Water Samples

Fig. 5: Mean Variation of Co Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 5 shows that mean values of Cobalt (Co) in the water samples and post hoc test readings ranged from 0.017+0.007 to $0.713\pm0.00 \ \mu g/L$. The highest value was found in WS 19 and lowest values in WS 6 (Table 3). The mean Co levels of the water samples including the control were all below permissible limits of 50.0µg/L set by WHO [10]. The tukey post hoc test revealed that level of Co in WS 1- 31 were below WHO permissible limits at a confident limit of p< 0.05. However, WS 13,7,9,3 and 6 were significantly similar but lower than WS 11. This was in turn lower than WS 28, 14, 2 and 5 respectively. WS 4, 10, 15, 17, 18, 21, 22, 23, 25, and 30, were similar but significantly lower than WS 12. While WS 16, 24, 29 and 31 were similar but significantly lower than WS 20 and 27 with WS 19 as the least with Co concentration. ANOVA for Co in decreasing order for water sample study gives that WS 19 > 1027, 1, 20 > 31, 29, 24, 16>12 >4, 8, 10, 15, 18, 21, 22, 23, 25, 26, 30 >5>2>14>28>11>3, 6, 7, 9, 13. The bombardment of the farmland with ammunition and explosives may be the contributing factor of Co. Comparisons of reported result of this study with that of Oladeji [24] showed that Co level $(377.00 - 1520.00 \mu g/L)$ was far higher than that obtained in present study. However, in Bangladesh study of surface water for Co level (0.01-0.40µg/L) shows that the level of Co in the study is lower than recorded in this present [25].

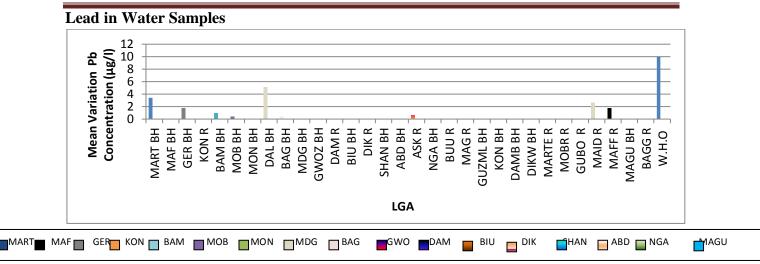
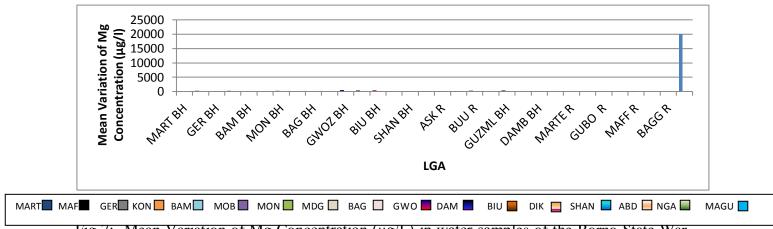
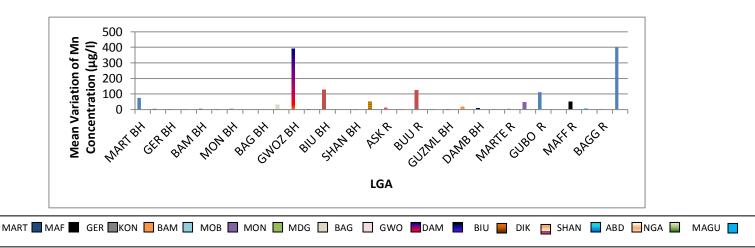



Fig. 6: Mean Variation of Pb Concentration (µg/L) in water samples of the Borno State War

Figure 6 shows the mean values of Pb in the water samples analysed which ranged from $0.00\pm$ 0.00 to $4.825\pm0.112 \,\mu$ g/L with the highest level of concentration found in the sample collected from **WS8** (Table 3). The lowest values were found in WS 2,4,7,10,11,12,13,14,15,16,18,19,20,27,30, and 31, which were all below acceptable limits of WHO (5.00µg/L for infant, 10.00µg/L for Adult) [10]. However, WS 8 (4.825+0.112µg/L) was almost closing up to the permissible limit for infant. The control was also found to be within the permissible limit of WHO [10]. The concentration of Pb in borehole water samples from Maiduguri was found to be present as 0.04 to 0.14 µg/L [17] which was below the present study and shows that Pb is building up due to the war activities as seen in Maiduguri sample of Pb $2.7+0.056\mu g/L$. Also in the study of Pb in borehole in Calabar [26] Pb (1.00 $\mu g/L$) recorded are lower than the present study. Dam from Pakistan results revealed that lead level was 0.00 $\mu g/L$ [27] which is in line with those of the present study with Pb level of 0.00 $\mu g/L$. In the study of Odiba et al [23], Pb level was not detected and in some cases were detected even higher than in this study. Furthermore, a study conducted on water from Ghana revealed the concentration of Pb was 0.038 µg/L [28]. The upper limit of the study never the less was lower than result reported for Bantaji water samples, whose result recorded higher in concentration of Pb as $14.5\mu g/L$ which is higher than the upper limits of this study. Pb had mean differences that were statistically significant at P<0.05. The presence of Pb in warring weapons and ammunition around the water sources can wash into the water bodies from soil. Pb which is present remarkably in the study area have been reported to bio accumulate in vital body organs and can also affect fetus, infants resulting in lowering of intelligent quotient even at lowest

dose [21]. The tukey test reveals that the mean concentration of lead shows slightly significant difference at P<0.05. ANOVA of lead in the decreasing order is WS 8 > 1>28>29, 3>5>17>6, 9, while the rest samples were BDL of the machine.



Magnesium (Mg) in Water Sample

Fig 7: Mean Variation of Mg Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 7 shows the mean values of Mg in water sample analysis and post hoc test reading which ranged from 8.928 ± 0.066 to 471.30 ± 2.072 µg/L (Table 3), with the highest concentration found in WS 13 and lowest value in WS 9 all of which were below acceptable limits of WHO $(20,000 \mu g/L)$. The tukey post hoc test revealed that there is slightly significant difference for the samples at P<0.05. The WS 9 and WS 22 were similar but significantly lower than WS 6 which in turn is lower than WS 25, 26, and 30. ANOVA of the sample in decreasing order is WS 13 >11>7>4>12>21>19>8>17>29,28>15>1>27>24>23>20>2,5>18>31,10,14>3>16>30,25,26>6>2 2 > 9. Mathew study shows that Mg for three well waters were 61560.00 µg/L, 513.00 µg/L and 194.00 μ g/L, which were far above the values of these study except for 194.00 μ g/L which was low [20]. Shill's study showed that Mg values for three borehole water gave 33750.00, 9160.00 and 11460.00 µg/L all of which values were higher than this present study [29]. Aremu carried out assessment of Mg in stream water of Kubuwa, F.C.T, Nigeria, on three stream samples. The study recorded 3167.00, 1174.00 and 3725.00 µg/L respectively and the Mg values were far above the present study [30]. Also all values of Mg obtained in this present study were below acceptable limit. The control was also found to be within the permissible limit of WHO [10]. Mg is a necessary mineral in life [29]. Shill also reported that people who drink water deficient in Mg generally appears more susceptible to cardio vascular disease. Deficiency in Mg (as in the

case of this present study) is called hypomagnesaemia. It can lead to nausea, health rhythm enzymes Alzheimer disease, fatigue [29].

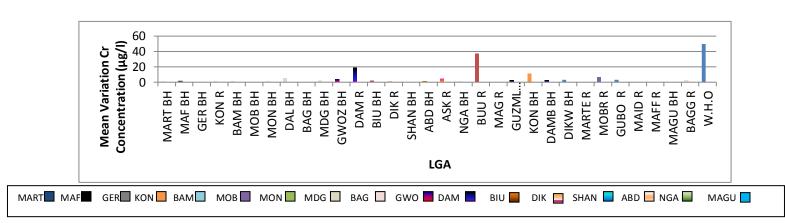

Manganese in Water Samples

Fig. 8: Mean Variation of Mn Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 8 shows the mean values of Mn in water sample analysis of this study which ranged from $0.250\pm0.00 \ \mu\text{g/L}$ to $364.75 \pm 56.83 \ \mu\text{g/L}$, with the highest concentration, found in WS 11 and lowest in WS 2. All of the samples (Table 3) were below acceptable limits of WHO (400 $\mu\text{g/L}$) [10]. Also the upper limit of the present study was below to the WHO acceptable high value [10]. The tukey post hoc test revealed no significant difference at P<0.05. The mean concentration of WS 2, 3, 4, 5, 6, 7, 9, 12, 14, 15, 17, 18,20, 21, 22, 23, 25, 30, 31, were similar but slightly different from WS 10.

The ANOVA of this study for Mn concentration in decreasing order is WS 11 >13,19 27 >1, 16, 29, 26 > 10 >31, 30, 28, 25,24, 23, 22, 21, 20, 18, 17, 16, 15, 14, 12, 9, 8, 7, 6, 5, 4, 3, and 2. The concentration of Mn in borehole water samples from Kebbi was found to be 100 μ g/L [31] which is below the higher limit of this present study, but higher than the lower limit of the present study. Also in a study in South Saudi, Mn mean concentration on ground water samples was 100 μ g/L [32]., This value was higher than the lower limit of the Mn determined in the present study. The increase and accumulation of Mn above permissible WHO limits have gross health implication if their presence is more than acceptable level [23]. Often time Mn are transported from one point of contamination to another in form of dissolved species in streams and river or embedded as part of suspended matter [23]. Odiba, further reported that Mn at

160µg/L was obtained [23]. While Njar *et al* [26] reported 20 µg/L and were far lower than present study. On comparing the past studies with the present study, it was observed that most of the sample from the present study, (though within permissible WHO limit) were higher than the level of Mn in the past study sited. This high Mn could be attributed to the increase in war around the sampled areas and this has gross health implication if not treated. Additionally, Mn is used in the manufacturing of weapons used for explosives. Its application is to impact hardness to iron and is currently substituting antimony in weapon production on the said purpose [32].

Chromium in Water Samples

Fig 9: Mean Variation of Cr Concentration (μ g/L) in water samples of the Borno State War Zones

Figure 9 shows the mean values of Cr in water samples analysis of this study which ranged from 0.00 to $37.43+0.00 \ \mu g/L$ (Table 3). The highest concentration is found in the WS 19 and lowest level recorded was those below detection limits (BDL) of the machine (Table 3). WS 3,6, 9, 28 and 30 were BDL of the machine. The control was also found to be within the permissible limit of WHO [10]. The tukey post hoc test reveal that at P<0.05 the mean concentration of WS 3, 6, 9, 28 and 30 were similar. ANOVA of this study for Cr concentration in decreasing order gives that WS 29>25>4>1>7>18>5>14>2>16>10>13>23>31>21>24>27>11>17>8>26>22>12 and 19 respectively. All the samples were below the acceptable limits of WHO ($50.0\mu g/L$) [10]. However this study shows that at WS 3, 6, 9, and WS 20, Cr was not detected and thus may imply that Cr is more readily bound to sediments than other elements. Also low Cr concentration may be due to high Dissolved Organic Nitrogen, Dissolved Oxygen and

Dissolved Organic Phosphorus [15]. The increase in Cr in WS 19 and other zones recorded maybe attributed to the liberation of metals from the sediment to the overlying water under the effect of both high temperature and organic matter decomposition [33]. Meanwhile, the deposition of the metals on those sediments may be from the war activities which involved deployments of high caliber ammunition on the soil. This is possible following detonation and explosives from aircraft, motors and tanks which are known to bear Cr. However, it has been reported that significant amount of Cr, were atmospherically deposited [33]. The level of Cr obtained in Hengshuihu (8.5µg/L) was lower than those reported by this study [13]. The value of Cr in Manyin's study is still far below those reported by Pavithrapriya et al. [16] which ranged from 30.00 μ g/L to 51.80 μ g/L. Pavithrapriya's study was above the level of Cr in this study. Also Cr was observed between BDL and 10.00mg/l [25] which was below the upper limits of this study. Wuana and Okieiman, [21] reported that bio accumulation of Cr in vital organs was possible and that chromium when accumulated in organs can also affect the kidney and central nervous systems. The implication therefore is that building up Cr in amount higher than permissible limits in the bodies of man and animals that drink the contaminated water source is dangerous. There is need to find means of removing this heavy metals (Cr) which might make crops and water unsuitable for human consumption in future by providing appropriate remediation method for metals from the bodies [12]

Correlation of Water Metals

Generally, the levels of concentration of metals in the war bombarded areas sampled were found in the following order: Cd> Ni>Pb> Mn>Co>Mg>Cr>Sb. Pearson correlation analysis (Table 4) was conducted on the levels of heavy metal to assess if there are similarities in the origins. Cd shows strongly positive correlations with Ni, Co, Cr at 0.01 (2 – tailed). Cd also showed correlation with Mn at 0.05 (2- tailed). Ni showed strongly positive correlation with Cd, Co, Mg, Mn, and Cr at 0.01 (2- tailed). Pb showed strongly positively correlation with Ni, Mn, Cr at 0.01 (2-tailed) and also weak correlation with Pb. Mn showed strongly positive correlation with Ni, Mn, Cr at 0.01 (2-tailed) and also weak correlation with Cd, Ni, Co, Mg and Mn at 0.01 (2- tailed). Following the extensive deployment of weapons/ ammunition on the war zones with no extensive farming ongoing, this indicates that the metals could mainly originate from warring activities. Weapons are known to bear these metals: Cd, As, Ni, Cr, Mn, Mg, Co, Sb. [11]. It is therefore no doubt that the war is the major contributing factor of those metals

following the strong positive correlation between the metals studied. In addition, the high content of these metals found in some samples indicated water pollution via metals (Ni, Cr, Mn, Mg, Co, Cd) presence. However, Sb was below detection limit of the machine. The result of this study when compared to the control zone led to indication of the water quality of the war zone water sampled to have become contaminated due to war deposits. The high correlation therefore shows that the parameters are derived from same sources [34].

		Cd	Ni	Sb	Со	Pb	Mg	Mn	Cr
	Pearson	1	.694**	b	.599**	143	118	.080	.573**
Cd	Correlation	-							
	Sig. (2-tailed)		.000		.000	.076	.145	.322	.000
	N	155	155	155	155	155	155	155	155
Ni	Pearson Correlation	.694**	1	. ^b	.558**	091	.257**	.332**	.858**
111	Sig. (2-tailed)	.000			.000	.261	.001	.000	.000
	Ν	155	155	155	155	155	155	155	155
Sb	Pearson Correlation	. ^b	.b	.b	.b	b.	.b	.b	.b
30	Sig. (2-tailed)								
	Ν	155	155	155	155	155	155	155	155
G	Pearson Correlation	.599**	.558**	.b	1	.100	167*	020	.399**
Co	Sig. (2-tailed)	.000	.000			.215	.038	.804	.000
	Ν	155	155	155	155	155	155	155	155
DI	Pearson Correlation	143	091	b.	.100	1	.065	081	094
Pb	Sig. (2-tailed)	.076	.261		.215		.418	.318	.245
	N	155	155	155	155	155	155	155	155
м	Pearson Correlation	118	.257**	b.	.167*	.065	1	.570**	.274**
Mg	Sig. (2-tailed)	.145	.001		.038	.418		.000	.001
	Ν	155	155	155	155	155	155	155	155
	Pearson Correlation	.080	.332**	b	020	081	.570**	1	.232**
Mn	Sig. (2-tailed)	.322	.000		.804	.318	.000		.004
	N	155	155	155	155	155	155	155	155
C.	Pearson Correlation	.573**	.858**	b	.399**	094	.274**	.232**	1
Cr	Sig. (2-tailed)	.000	.000		.000	.245	.001	.004	
	N	155	155	155	155	155	155	155	155

Table 4: Correlation of Metals in the Water Samples

**. Correlation is significant at the 0.01 level (2-tailed).*. Correlation is significant at the 0.05 level (2-tailed).

b. Cannot be computed because at least one of the variables is constant.

CONCLUSION

This environmental assessment of level of metal research in the water samples of Borno State war zone will be useful for the management and planning of the protection of water sources in the warring zones. The metals from these water samples (WS) of war zones were found to be in decreasing order of Cd>Mn>Ni> Pb>Co>Mg>Cr>Sb. The level of metals in the water samples were found as follows: 0.00 to $15.38 \pm 0.18 \mu g/L$ (Cd), 0.00 ± 0.00 to $12.65 \pm 0.13 \mu g/L$ (Ni), Sb where below detection limit of the machine. $0.00\pm0.00 \,\mu$ g/L to $0.713\pm0.00 \,\mu$ g/L (Co), 0.380 ± 0.00 to $5.07 \pm 0.11 \mu g/L$ (Pb), 8.928 ± 0.066 to $471.30 \pm 2.072 \mu g/L$ (Mg), 0.25 ± 0.00 $\mu g/L$ to $364.75 \pm 1.69 \mu g/L$ (Mn) and 0.00 to $37.43 \pm 0.00 \mu g/L$ (Cr). Correlation matrix reveal that warring activities could be the anthropogenic source of Cd, Mn, Ni, Pb, Co, Mg, Cr, in the water samples as most agricultural activities have seized due to war. However, a comparison with previous studies in Maiduguri of Borno State shows accumulation and increase in the metals over time. The strong correlation between metals in the sampled waters further shows that contamination could mainly originate from one source of anthropogenic activity which is war. This is believed to be so because control zone have metals levels all below WHO permissible limit despite the agricultural activities on going in its environment. Presence of Cd, Mn and Ni needs to be looked into as this can cause challenges to humans following direct consumption of the polluted water.

REFERENCES

- [1] Savabieasfahani, M. (2013). Is the Iraqi birth defects report believable *BMJ*, 347, f6247.doi: 10.1136/bmj.f6247
- [2] Gebka, K., Beldowski, J., & Beldowska, M. (2016). The impact of military activities on the concentration of mercury in soils of military training groundsand marine sediments. *Environ. Sci. Pollut. Res. Int.* 23, 23103–23113. doi:10.1007/s11356-016-7436-0.
- [3] Navy U. S. (2008). Hawaii Range Complex: Environmental Impact Statement. Evanston, IL: Northwestern University.
- [4] Audino, M. J. (2006). Use of Electroplated Chromium in Gun Barrels. Army Benet Laboratories. DoD Metal Finishing Workshop Washington, DC.
- [5] Casey, T. (2009). US Military Targets Toxic Enemy #1: Hexavalent Chromium. Availableat: https://cleantechnica.com/2009/07/04/us-military-targetstoxic-enemy-1-hexavalent-chromium/ (accessed July 4, 2009).

- [6] Fitchett, B. (2019). Priming Compounds and Primers Introduction. Bev Fitchett's guns magazine. Available at: https://www.bevfitchett.us/ballistics/priming-compounds-andprimers-introduction.html
- [7] Nazaryan, A. (2014). The US Department of Defense is one of the world's biggest polluters. Newsweek, Accessed on 6/13/2016: http://www.newsweek.com/2014/07/25/us-department-defence-one-worlds-biggestpolluters-259456.html.
- [8] Shuibu. Y. (2019). Assessment of Some Heavy Metals Dissoled organic carbon, phosphorus, Nitrogen and Characterization of dissolved Organic Matter in Water Samples from Five Wetland Areas in Northern Nigeria. Ph. D Thesis. Bayero University.
- [9] Fatima B.S. (2015). Physiochemical Analysis of Water and Sediment from Some Dams in Katsina State, Ph.D Thesis to Dept .of Pure and Industrial Chemistry, BUK, unpublished.
- [10] WHO (2019): Guideline for Drinking Water Quality. World Health Organization, Geneva.
- [11] Bazzi W, Antoine G. AbouFayad, Aya Nasser, Louis Patrick Haraoui, Omar Dewachi, GhassanAbousitta, Vinh-Kim Nguyen, Aula Abara, Nabil Karah, Hannah Landecker, Charles Knapp, Megan M. McEvoy, Muhammed H. Zaman, PaulG, Higgins and Ghassan M. Matar.Simul M.D, Muhammad AB, Rashed-UN-Nab., venkatramanan S. San Y.C.,& Shaciqul M. D(2019): Heavy Metal Toxicity in Armed Conflict Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co resistance Mechanisms, *Front Microbiol.* 2020 Feb 3;11:68. doi: 10.3389/fmicb.2020.00068. PMID: 32117111; PMCID: PMC7008767.
- [12] FAO (2019) Joint W.H.O. Expert committee on food additives 2019 Summary and conclusion proceedings of the meeting in Rome, June 1-10 2019.
- [13] Manyin Z. Lijuan .C. Lianzi S. Yifei. W.(2009): Distribution and Enrichment of Heavy Metals amongsediments Water Bodies and Plants in Hengshuihu Wetland of Northern China. *Ecological Engineering* 35(4), 5632 – 569 DOI: 10.1016/j.ecoleng.2008.05.012.
- [14] Honggang, Z., Baoshan, C. U. I, Rong, X,& Hui, Z. (2010): Heavy Metal in Water, Soils and Plant in Riarian Wetlands in the Pearl River Estuary, South China. *Sci Direct*

ProcediaEnvironmentalScienceInt,2,1344-1354.doi.org/10.1016/j.proenv.2010.10.145

- [15] Yusuf, S., Audu, A.A., & Waziri M., (2017): Comparative Assessment of the Environmental Dynamic of Dissolved Organic nitrogen (DON) and Dissolved Organic Phosphorus (DOP) from three Wetlands in Northern Nigeria *Journal of Applied Sciences* 7(4), 23-28.
- [16] Pavithrapriya . S., Mahimairaja, S., & Sivasubramanian, K. (2015): Pollution Due to Heavy Metal in Coimbatore Wetlands, India. *Research Journal of Agriculture and Forestry Sciences*. 3(6), 1-5. ISSN 2320-6063
- [17] Kolo, B G., & Waziri, M (2012); Determination of Some Heavy Metals in Borehole Water Samples of Selected Motor Parks in Maiduguri, Nigeria. *International Journal of Basic and Applied Chemical Sciences*, 2, 18-20.
- [18] Mahaurpawar, M (2015). Effects of Heavy Metals on Human Health. Int J. Res –
 Granthgalayah. Acknowledge Reposition pp 1-7DOI: https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3282
- [19] Olcay, K., Nuran, C Y., Numan, Y. & Nilgun, T (2010). Assessment of some Heavy Metal in Drinking Water Samples of Tuncel, Turkey, *Journal of Chemistry*, vol. 8, Article ID 370545, DOI.org/10.1155/2011/370545
- [20] Mattew, O.A. (2011). Physicochemical properties of well, Bore Hole and stream waters in Kubwa Bwari Area Council FCT, Nigeria. *Electronic Journal of Environmental, Agricultural and Food Chemistry*, 10(6), 2296-2304
- [21] Wuana, R.A., & Okieiman, F.E. (2011): Heavy metals in contaminated soils; a review of sources, chemistry risk and best available strategies for remediation, *International Scholar Research Network*. Volume (2011) article ID 40264720p
- [22] Priya, K.L., Jebastina, N.& Price Arulraj, G. (2015): Assessment of Water quality in indices for Groundwater in the Singanallur Sub – Basin, Coimbatora, India1: 186.doi:10.4172/scientificreports.186
- [23] Odiba, J.O, Mattew, O. A. & Chrysanthus, A. (2017) Evaluation of the Physicochemical and Heavy Metals Contact of Ground Water Source in Bantaji and Rafin-Kada Settlement of Wukari LGA, Taraba State, *Nig. J of Environ.* Chem. and Ecotoxicology, 9(4), 43-53. DOI:10.5897/JECE2017.0416 Corpus ID: 134545535

- [24] Oladeji, S. & Saeed, M.D. (2015). Assessment of co level in waste water, soil and vegetables samples grown along Kubanni Stream Channels in Zaria, Kaduna State, Nigeria. *African Journal of Environmental Science and Technology*, 9(10)765 772 · DOI: 10.5897/AJEST2015.1969.
- [25] Simul, M.D., Muhammad, A.B., Rashed-UN-Nab., Venkatramanan, S., San YC & Shaciqul., M.D. (2019): Monitoring and assessment of heavy metal contamination in surface water and sediment of the old Brahiuaputra River Bangladesh. *Appl Water Sci* 9, 125. Doi.org/10.1007/s13201-019-1004-y
- [26] Njar, G.N., Iwara, A.L., Offiong, R.A. & Deekor, T.D. (2012). Assessment of heavy metal status of boreholes in calabar south local Government Area Cross River State, Nigeria. Ethiopian J. Environ. Stud. Mange 5(1), 86 91
- [27] Azeem, T., Rehman, H.C., & Zarin, K. (2016). Analysis of physiochemical parameters and heavy metals of water sediment with respect of fishes collected from Ghol dam district Karak, Khyber Pakhtunkwa, Pakistan. *Int. J. PharmaSci.Res* 7(11), 18-20.
- [28] Nkansah, M.A., & Ephrain, J.H. (2009). Physicochemical Study of Water from Selected Bore Hole in the Bosomtwi – Atwina - Kwanwoma District of Ghana *Pacific J. Sci. Technology* 10(2), 643 – 648
- [29] Shills, M.E. G., Young, VR N., Ieman Butterworth, D.E., Nieman, C.N (cds)& Brown,
 W.C. (2010) publishers, on nutrition, Dubuque, USA AP 276 282
- [30] Aremu. M.O., Ozonnyin, G.N. & Ikokuh, P.P., (2007). Physiochemical properties of well, Borehole and stream water in Kubuwa, Bwari Area Council FCT Nigeria. *Electronic Journal of Environmental, Agricultural and Food Chemistry*, 10(6), 2296-2304
- [31] Shabanda, I.S., Kilgori, S.A., Umar, S., & Aminu, M.H. (2014). Selected trace of heavy metals in wells and boreholes in Aliero metropolis. *Int. res. J. Pure Appl Chem.* 4(6), 880-886.
- [32] Alshikh, A. (2011). Analysis of heavy metals and organic pollutants of ground water sample of south Saudi, *life Sci. J.* 8(4), 438-441
- [33] Ali, M. & Abdel Satar, (2005). Water Quality Assessment of river Nile from Idfo to Cairo. Egypt. J. Aquat. Res., 31(2), 200-223.
- [34] Edet, A., Nganje T.N., Ukpong, A.J. & Ekwere, A.S. (2011). Ground Water Chemistry and Quality of Nigeria: A Status Review. *Afr.J. Environ. Sci. Technol.*, 5(13) 1152-1169.DOI: 10.5897/AJESTX11.009