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ABSTRACT 

The present article studied heterogeneous irreversible reaction of type A → B for the linear 

reactive general rate model (RGRM) of liquid chromatography. The governing model equations 

comprise an external and intra-particle pore diffusion, axial dispersion, first-order heterogeneous 

chemical reactions, and interfacial mass transfer. The semi-analytical solutions of the model 

equations are obtained by the successive application of the Laplace transformation and eigen-

decomposition method. The current solutions expand and generalize the recent solutions for 

single-solute transport in the non-reactive general rate model. For validating the analytical model 

solutions a scheme of high-resolution finite-volume was applied on the governing model 

equations to obtain a simulated numerical solution. Scenarios of various studies are analyzed to 

confirm the accuracy of the semi-analytical solutions and the reliability of the applied numerical 

technique. The semi-analytical solutions are valuable mechanisms for examining the importance 

of reactive adsorption affinity, intra-particle pore diffusion and interfacial mass transfer rate on 

concentration profiles. These results are very useful for chromatography process utilizing diluted 

(small volume) samples. 

 

Keywords: Chromatographic reactor, Linear adsorption, Linear general rate model, Irreversible 

reactions 

 
 

1. INTRODUCTION 

High-performance liquid chromatography (HPLC) was developed with aim to further improve 

the performance of classical column (LC) which allows the flow of a mixture through the 

column via gravity. HPLC uses a high-pressure pump which allows the mixture to flow into the 

column along with the solvent and in contrast to the classical LC. This process has potential for 
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providing efficient separations and more reliable identification of the mixture components. It is 

applicable in chemical engineering as an effective quantitative chromatographic method for 

separating mixture components that have distinct adsorption affinities among its components [1]. 

Various applications of chromatographic methods have been found in the pharmaceutical, 

chemical, petrochemical, photochemical, food and biotechnological industries. Numerous 

features which present the HPLC procedures superior to other types of chromatography, are as 

follows (i) the time for its analysis is short, (ii) it is generally appropriate and hence only a few 

samples are exempted from the HPLC possibility, (iii) it can be operated on a much larger scale, 

(iv) HPLC columns can be reused without reconstruction [1-5].  

                  Reactive chromatography is a combined procedure where the chromatographic 

separation of chemical or biochemical reactions are converted into products and reactants. This 

methodology increases reactant conversion and product purity and has motivated many scientists 

in the last few generations [3, 4, 6-16]. In this integrated process, the chemical reactions can be 

catalyzed homogeneously and heterogeneously. In the case of homogeneous catalysis, account 

should be taken of the separation of the catalyst. However, in the case of esterification, 

heterogeneously catalyzed reactions typically occur where the same ion exchange resin serves as 

a catalyst for the reaction and as an absorbent for separation.  

                   To understand the fundamental concept of a chromatographic reactor with a fixed-

bed, a single column reactor and an irreversible reaction of a type A → B is considered. The 

reactant A is dissolved in the desorbent and injected as a rectangular pulse into the column of the 

stationary phase. The reaction occurs on the catalytic surface to make the product B. Both 

components A and B interact with the surface of the adsorbent and, due to their diverse affinities 

to the stationary phase, they migrate inside the column at various velocities of propagation. 

Therefore, the components are separated and the driving force for the forward reaction is 

increased while the backward reaction is suppressed. Also, a chemical balance can be performed 

and a high purity product can be collected from the outlet of the column. 

                Modeling and simulation of chromatographic processes have become increasingly 

valuable tools for understanding the underlying transport mechanisms for scaling up 

physiochemical parameters and for optimizing experimental conditions. There are several 

models in the literature with different levels of complexity to describe the method [5, 6]. The 

General Rate Model (GRM) is the most complex and detailed chromatography model among all 
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the transport models [6]. In GRM, chromatographic separation is controlled by several sorption 

and transport processes at various levels. The molecules in the sample are transported by 

convection through the interstitial bulk phase between chromatographic beads but are dispersed 

due to inhomogeneity of the flow. The analytical solutions of linear chromatographic models can 

be used to quantify the effect of different mass transfer and reaction kinetics on the process 

without practical laboratory experiments [4-6, 16-19]. These models are useful for understanding 

the chromatographic process, as in most situations the volume of the sample injected is small and 

diluted. The derived analytical solutions could be used to authenticate numerical solutions for 

more complex models where no experimental data is accessible [5, 6]. 

                  In this work, a linear reactive general rate model (RGM) is analyzed to study two-

component adsorption equilibria and reaction-separation kinetics in a fixed-bed chromatographic 

reactor. Semi-analytical solutions of the model are derived for both irreversible and reversible 

reactions in the particles macrospores. The Laplace transformation and eigen-decomposition 

technique are successively applied to solve the model equations for Dirichlet boundary 

conditions (BCs). Due to the complex structure of the solutions, analytical back transformations 

may not be possible. Therefore, numerical Laplace inversion is applied to get the time domain 

solutions [6, 12, 20]. To validate the derived solutions, numerical solutions are also obtained by 

applying a high resolution finite volume scheme to the same model equations [20, 21].                  

Several case studies are considered and both numerical and semi-analytical results are compared.  

                This article is structured in the following manner: a brief introduction was presented in 

Section 1. In Section 2, the linear RGRM is introduced for irreversible reaction along with the 

Dirichlet BCs. In Section 3, analytical solutions are derived to solve these model equations for an 

irreversible reaction considered. In Section 4, varieties of test problems are discussed. Finally, in 

Section 5 Conclusions are drawn.  

 

2. FIXED-BED CHROMATOGRAPHIC REACTOR FOR IRREVERSIBLE REACTION  

     (A →B) 

Throughout this system, component A (component 1) is converted to component B (component 

2) by irreversible first-order heterogeneous reactions. The reactant and product travel along the 

column by axial dispersion and conversion of the reactant to the product is due to the first-order 

chemical reaction in the solid phase. The considered two-component reactive general rate model 

is based upon the following assumptions: (1) the porous particles in the column are spherical 

http://www.unn.edu.ng/nigerian-research-journal-of-chemical-sciences/


Abdulaziz G. Ahmad, Abubakar A. Abubakar and Idris M. Idris: Analytical Investigations of Irreversible 
Reactions using a Linear Reactive General Rate Model of Liquid Chromatography 
  

 

http://www.unn.edu.ng/nigerian-research-journal-of-chemical-sciences/                                       

 
276 

shaped and have same diameter, (2) the chromatographic process is isothermal , (3) there exist an 

instantaneous local equilibrium between the macro pore surfaces and the stagnant fluid inside 

particles macro pores, (4) the concentration gradient in the radial direction are neglected, (5) the 

diffusional and mass transfer parameters are constant and are independent of the mixing effects 

of the component involved, (6) interfacial mass transfer between the bulk fluid and particle 

phases is described by film mass transfer mechanism. 

                On the basis of the above assumption, the current RGRM contains four mass balance 

equations for the transport of two-component mixtures, i.e. two equations describe transport in 

the bulk of the fluid and two equations are for transport within the macro pores of the particles. 

The one-dimensional mass balance equations of RGRM for the mobile phase of the fluid 

considered to be a two-component solute percolating through a chromatographic reactor filled 

with radius spherical particles of 𝑅𝑝 are expressed as [5, 6]. 
 

𝜕𝑐1

𝜕𝑡
+ 𝑢

𝜕𝑐1

𝜕𝑧
= 𝐷𝑧

𝜕2𝑐1

𝜕𝑧2 −
3

𝑅𝑝
𝐹𝑘𝑒𝑥𝑡,𝑖(𝑐1 − 𝑐𝑝,1|𝑟=𝑅𝑝

),                                                                     (1) 

𝜕𝑐2

𝜕𝑡
+ 𝑢

𝜕𝑐2

𝜕𝑧
= 𝐷𝑧

𝜕2𝑐2

𝜕𝑧2 −
3

𝑅𝑝
𝐹𝑘𝑒𝑥𝑡,𝑖 (𝑐2 − 𝑐𝑝,2|𝑟=𝑅𝑝

).                                                                    (2) 

 

In the above equation, 𝑧 represents the axial coordinate along the column length, 𝑡 denotes the 

time coordinate, 𝑐𝑖(𝑡, 𝑧) is the concentration of i-th component in the mobile phase of the fluid 

and 𝑐𝑝,𝑖(𝑡, 𝑧) is the i-th component concentration in the particles, respectively. Moreover, 

𝐷𝑧 represents the axial dispersion coefficient, 𝑢 is the interstitial velocity, 𝑘𝑒𝑥𝑡,𝑖 is the external 

mass transfer coefficient of i-th component,  between (0, 1) is the external porosity, 𝐹 =
1−


 is 

the phase ratio and r denotes the radial coordinate of spherical particles of radius 𝑅𝑝. 

The corresponding mass balance equations for the solute considering irreversible reactions in the 

solid phase, along with two mechanisms of intra-particle transport is expressed as [5,6].  

 

𝑝
𝜕𝑐𝑝,1

𝜕𝑡
+ (1 − 𝑝)

𝜕𝑞∗
𝑝,1

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 [𝑝𝐷𝑝,1

𝜕𝑐𝑝,1

𝜕𝑟
+ (1 − 𝑝)𝐷𝑠,1

𝜕𝑞∗
𝑝,1

𝜕𝑟
]) − (1 − 𝑝)1𝑞𝑝,1

∗ ,    (3) 

𝑝
𝜕𝑐𝑝,2

𝜕𝑡
+ (1 − 𝑝)

𝜕𝑞∗
𝑝,2

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 [𝑝𝐷𝑝,2

𝜕𝑐𝑝,2

𝜕𝑟
+ (1 − 𝑝)𝐷𝑠,2

𝜕𝑞∗
𝑝,2

𝜕𝑟
]) + (1 − 𝑝)1𝑞𝑝,1

∗ .    (4) 

 

Here, 𝑞∗
𝑝,𝑖

 is the local equilibrium concentration of solute in the stationary phase, 𝑝 is the 

internal porosity, 𝐷𝑝,𝑖 is the pore diffusivity of i-th component,  𝐷𝑠,𝑖  is the surface diffusivity, 

and 𝑖 is the reaction rate constant of component 1. 
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Eqs. (1) - (4) are connected at 𝑟 = 𝑅𝑝 through the subsequent expressions which quantify the 

temporal change of the average loadings of the particles [6]. 

[𝑝𝐷𝑝,1
𝜕𝑐𝑝,1

𝜕𝑟
+ (1 − 𝑝)𝐷𝑠,1

𝜕𝑞∗
𝑝,1

𝜕𝑟
]

𝑟=𝑅𝑝

= 𝑘𝑒𝑥𝑡,1(𝑐1 − 𝑐𝑝,1|𝑟=𝑅𝑝
),                                             (5) 

[𝑝𝐷𝑝,2
𝜕𝑐𝑝,2

𝜕𝑟
+ (1 − 𝑝)𝐷𝑠,2

𝜕𝑞∗
𝑝,2

𝜕𝑟
]

𝑟=𝑅𝑝

= 𝑘𝑒𝑥𝑡,2(𝑐2 − 𝑐𝑝,2|𝑟=𝑅𝑝
).                                             (6) 

 

In this work, we only considered the linear adsorption isotherms [6]. 

 

𝑞∗
𝑝,𝑖

= 𝑎1𝑐𝑝,𝑖,  𝑖 = 1,2.           (7) 

 

After using Eq. (7) in Eqs. (3) and (4), we obtain 

 

𝑎1
∗ 𝜕𝑐𝑝,1

𝜕𝑡
=

𝐷𝑒𝑓𝑓

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑐𝑝,1

𝜕𝑟
) − (1 − 𝑝)1𝑎1𝑞𝑝,1

∗ ,                                                                         (8) 

𝑎2
∗ 𝜕𝑐𝑝,2

𝜕𝑡
=

𝐷𝑒𝑓𝑓

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑐𝑝,2

𝜕𝑟
) + (1 − 𝑝)1𝑎1𝑞𝑝,1

∗ ,                                                                         (9) 

 

with, 

 

𝑎𝑖
∗ = 𝑝 + (1 − 𝑝)𝑎𝑖 and 𝐷𝑒𝑓𝑓,𝑖 = 𝑝𝐷𝑝,𝑖 + (1 − 𝑝)𝐷𝑠,𝑖𝑎𝑖,           𝑖 = 1,2.                            (10) 

 

Similarly, Eq. (5) and Eq. (6) simplifies to 

 

𝐷𝑒𝑓𝑓,1
𝜕𝑐𝑝,1

𝜕𝑟
|𝑟=𝑅𝑝

= 𝑘𝑒𝑥𝑡,1(𝑐1 − 𝑐𝑝,1|𝑟=𝑅𝑝
),                                                                                (11) 

𝐷𝑒𝑓𝑓,2
𝜕𝑐𝑝,2

𝜕𝑟
|𝑟=𝑅𝑝

= 𝑘𝑒𝑥𝑡,2(𝑐2 − 𝑐𝑝,2|𝑟=𝑅𝑝
).                                                                                (12) 

 

Furthermore, to facilitate our analysis and reduce the number of variables, the subsequent 

dimensionless variables are introduced: 

 

𝑥 =
𝑧

𝐿
,  =

𝑢𝑡

𝐿
,    =

𝑟

𝑅𝑝
,   𝑃𝑒 =

𝐿𝑢

𝐷𝑧
,     

𝑖
=

𝐿

𝑢
𝑖𝑎𝑖, =

𝑘𝑒𝑥𝑡,𝑖𝑅𝑝

𝐷𝑒𝑓𝑓,𝑖
,   

𝑝,𝑖
=

𝐷𝑒𝑓𝑓,𝑖𝐿

𝑅𝑝
2𝑢

, 
𝑝,𝑖

=3
𝑝,𝑖


𝑝,𝑖
𝐹,     𝑖 = 1,2,                                                                                  (13)                                                                                                                                                  

 

where L stand for the column length and 𝑃𝑒is representing the Peclet number. By applying the 

above dimensionless variables in Eqs. (1), (2), (9) and (10), we obtain 

𝜕𝑐1

𝜕
+ 𝑢

𝜕𝑐1

𝜕𝑥
=

1

𝑃𝑒

𝜕2𝑐1

𝜕𝑥2 − 
𝑝,1

(𝑐1 − 𝑐𝑝,1|𝑟=𝑅𝑝
),                                                                             (14) 

𝜕𝑐2

𝜕
+ 𝑢

𝜕𝑐2

𝜕𝑥
=

1

𝑃𝑒

𝜕2𝑐2

𝜕𝑥2 − 
𝑝,2

(𝑐2 − 𝑐𝑝,2|𝑟=𝑅𝑝
),                                                                               (15) 

𝑎1
∗ 𝜕𝑐𝑝,1

𝜕
= 

𝑝,1

𝜕

𝜕𝑟
( 2 𝜕𝑐𝑝,1

𝜕𝑟
) − (1 − 𝑝)

1
𝑐𝑝,1,                                                                           (16) 
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𝑎2
∗ 𝜕𝑐𝑝,2

𝜕
= 

𝑝,2

𝜕

𝜕𝑟
( 2 𝜕𝑐𝑝,2

𝜕𝑟
) + (1 − 𝑝)

2
𝑐𝑝,2.                                                                           (17) 

 

Eqs. (16) and (17) can now be rephrased as 

𝑎1
∗ 𝜕

𝜕
[ 𝑐𝑝,1] − 

𝑝,1

𝜕2

𝜕2 [ 𝑐𝑝,1] + (1 − 𝑝)
1

[ 𝑐𝑝,1] = 0,                                                         

(18) 

𝑎2
∗ 𝜕

𝜕
[ 𝑐𝑝,2] − 

𝑝,2

𝜕2

𝜕2 [ 𝑐𝑝,2] + (1 − 𝑝)
2

[ 𝑐𝑝,2] = 0,                                                         

(19) 

 

Moreover, the suitable inlet and outlet BCs are required for Eqs. (14), (15), (18) and (19). For an 

initially regenerated column, the corresponding initial conditions of Eqs. (14) and (15)} are 

stated as 

 

𝑐𝑖(0, 𝑥) = 0,        (0 < 𝑥 < 1)               𝑖 = 1,2                                                                           (20) 

 

and initial conditions for Eqs. (18) and (19), considering empty particles, are expressed as 

 

𝑞𝑝,𝑖
∗ (0, 𝑥, ) = 0,     𝑐𝑝,𝑖(0, 𝑥, ) = 0,     𝑥, 𝑟 (0,1).                                                         (21) 

 

Because of the assumed desorption rates or rapid adsorption, the concentrations of solute in the 

pores and that in the stationary phase are in equilibrium state. Moreover, The Dirichlet BCs 

considered for Eqs. (14) and (15), in this current study is expresses as   

 

2.1 Inlet Dirichlet BCs 

 

The simpler Dirichlet BCs are utilized at the column inlet in this case: 

 

    𝑐𝑖(, 𝑥 = 0) = {
𝑐𝑖𝑛𝑗,𝑖,      𝑖𝑓 0 ≤ 𝜓 ≤ 𝜓𝑖𝑛𝑗,

  0,          𝜓 > 𝜓𝑖𝑛𝑗,
                                                                             (22a) 

 

together with zero Neumann BCs for a hypothetically infinite length column: 

 
𝜕𝑐𝑖

𝜕𝑥
|𝑥=∞ = 0,                                                                                                                              (22b) 

 

In the above equation, 𝜓𝑖𝑛𝑗 stand for the time of sample injection. For sufficiently small 

dispersion coefficient, for example 𝐷𝑧 ≤ 10−5𝑚2/𝑠 the Dirichlet inlet boundary conditions are 

well applicable.                
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3. RGRM ANALYTICAL SOLUTIONS FOR REACTION OF TYPE A → B            

In this section, semi-analytical solutions of linear RGRM (c.f. Eqs. (14), (15), (18) and (19)) are 

derived for Dirichlet (Eqs. (22a) and (22b)). The model can be conveniently solved by means of 

a Laplace transformation defined as 

 

𝑐̅(𝑠, 𝑥) = ∫ 𝑒−𝑠𝜓𝑐(𝜓, 𝑥)𝑑𝜓,
∞

0
𝜓 ≥ 0.             

                                                                           (23) 

The Laplace transformations of model Eqs. (14) and (15) generate 

 

𝑠𝑐1̅ +
𝜕𝑐1̅

𝜕𝑥
=

1

𝑃𝑒

𝜕2𝑐1̅

𝜕𝑥2
− 

𝑝,1
(𝑐1̅ − 𝑐𝑝̅,1|𝑝=1),                                                                       (24) 

𝑠𝑐2̅ +
𝜕𝑐2̅

𝜕𝑥
=

1

𝑃𝑒

𝜕2𝑐2̅

𝜕𝑥2
− 

𝑝,2
(𝑐2̅ − 𝑐𝑝̅,2|𝑝=1).                                                                                (25) 

 

While, the Laplace transformations of Eqs. (18) and (19)  give 

 


𝑝,1

𝑑2

𝑑 2 [ 𝑐̅𝑝,1] −
𝑎1

∗

𝑝,1

[ 𝑐̅𝑝,1] −
(1−𝑝)1

𝑝,1

[ 𝑐̅𝑝,1] = 0,                  (26) 


𝑝,2

𝑑2

𝑑 2 [ 𝑐̅𝑝,2] −
𝑎2

∗

𝑝,2

[ 𝑐̅𝑝,2] −
(1−𝑝)2

𝑝,2

[ 𝑐̅𝑝,2] = 0.                                                                (27) 

 

The general solution of Eq. (26) is given as 

 

𝑐𝑝̅,1(𝑠, 𝑥, 𝜃) =
1

𝜃
[𝑘1𝑒√𝛼(𝑠)𝜃 + 𝑘2𝑒−√𝛼(𝑠)𝜃],                                                                              (28) 

 

where, 

 

𝛼(𝑠) =
𝑎1

∗ 𝑠+(1−𝑝)1

𝑝,1

.                                                                                                                  (29) 

By applying the boundary conditions given in Eq. (22a), the values of 𝑘1 and 𝑘2 in Eq. (28) is 

obtain as 

𝑘1,2 = ±
𝜁𝑝,1𝑐1̅

2(sinh√𝛼(𝑠))[√𝛼(𝑠) coth(√𝛼(𝑠))+𝜁𝑝,1 −1]
.                                                                           (30) 

 

Here, the upper positive sign is taken for 𝑘1 and the lower negative sign for 𝑘2. At 𝜃 = 1, Eqs. 

(28) and (30) reduce to 

𝑐𝑝̅,1|𝜃=1 = 𝑐1̅𝑓1(𝑠),                                                                                                                    (31) 

where, 

 

𝑓1(𝑠) =
𝜁𝑝,1

[√𝛼(𝑠) coth(√𝛼(𝑠))+𝜁𝑝,1 −1]
.                                                                                              (32) 
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After introducing Eq. (31) in Eq. (27), we obtain the general solution as 

 

𝑐𝑝̅,2(𝑠, 𝑥, 𝜃) =
1

𝜃
[𝑘1

′ 𝑒√𝛼(𝑠)𝜃 + 𝑘2
′ 𝑒−√𝛼(𝑠)𝜃] +

𝑓1(𝑠)(1−𝑝)1𝑐1̅

𝑎2
∗ .                 (33) 

 

Where 𝛼′(𝑠) =
𝑎2

∗

𝑝,2

, by applying Eq. (22a) in (33), we obtain 

 

𝑘1,2
′ = ±

𝜁𝑝,2𝑐2̅−
𝜁𝑝,2𝑓1(𝑠)(1−𝑝)1𝑐̅1

𝑎2
∗

2(sinh√𝛼′(𝑠))[√𝛼′(𝑠) coth(√𝛼′(𝑠))+𝜁𝑝,2 −1]
,                                                                        (34) 

 

At 𝜃 = 1, Eqs. (33) and (34) reduce to 

 

𝑐𝑝̅,2|𝜃=1 = 𝑐2̅𝑓2(𝑠) + 𝑐1̅Ψ(𝑠),                                                                                                   (35) 

 

where, 

 

𝑓2(𝑠) =
𝜁𝑝,2

[√𝛼′(𝑠) coth(√𝛼′(𝑠))+𝜁𝑝,2 −1]
.                                                                                            (36) 

 

and 

 

Ψ(𝑠) =
𝑓1(𝑠)(1−𝑝)1

𝑎2
∗ [

−𝜁𝑝,2

[√𝛼′(𝑠) coth(√𝛼′(𝑠))+𝜁𝑝,2 −1]
+ 1].                                                               (37) 

 

After introducing Eqs. (31) and (35) in Eqs. (24) and (25), respectively, we get the following 

ordinary differential equations (ODEs) 

𝑑2𝑐1̅

𝑑𝑥2 − 𝑃𝑒
𝑑𝑐1̅

𝑑𝑥
− 𝑃𝑒𝛽1(𝑠)𝑐1̅ = 0,                                                                                                  (38) 

𝑑2𝑐2̅

𝑑𝑥2 − 𝑃𝑒
𝑑𝑐2̅

𝑑𝑥
− 𝑃𝑒𝛽2(s)Ψ(𝑠)𝑐1̅ = 0,                                                                                          (39) 

 

where 

 

𝛽1(𝑠) = 𝑠 + 
𝑝,1

(1 − 𝑓1(𝑠)),           𝛽2(𝑠) = 𝑠 + 
𝑝,2

(1 − 𝑓2(𝑠)).                                          (40) 

 

In the matrix notions, Eqs. (38) and (39) can be expressed as 

 

𝑑2

𝑑𝑥2 (𝑐1̅
𝑐2̅

) − 𝑃𝑒
𝑑

𝑑𝑥
(𝑐1̅

𝑐2̅
) − [

𝑃𝑒𝛽1(𝑠) 0

−𝑃𝑒𝛽2(s)Ψ(𝑠) 𝑃𝑒𝛽2(𝑠)
] (𝑐1̅

𝑐2̅
) = (0

0
).                                                (41) 

Here, the curly brackets (  ) represents a column vector, the square brackets [  ] stands for a 

square matrix, and 𝑐𝑖̅ for 𝑖 = 1,2 are the liquid phase concentrations of mixture components in 

the Laplace domain. 
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The reaction coefficient matrix  [𝛽] on in Eq. (41) is given as 

 

𝛽 = [
𝑃𝑒𝛽1(𝑠) 0

−𝑃𝑒𝛽2(s)Ψ(𝑠) 𝑃𝑒𝛽2(𝑠)
].                                                                                               (42) 

 

In the next step, linear transformation matrix [A] will be computed [22]. Note that, the columns 

of [A] are the eigenvectors of the matrix [𝛽]. The eigenvalues and 

Eigen vectors of the matrix [𝛽]  are given as: 

𝜆1 = 𝑃𝑒𝛽1(𝑠),     𝑥1 = (
𝐴11

−𝑝,2𝑃𝑒Ψ(𝑠)𝐴11

𝑃𝑒𝛽1(𝑠)−𝑃𝑒𝛽2(𝑠)

) ,    𝑎𝑛𝑑  𝜆2 = 𝑃𝑒𝛽2(𝑠),     𝑥2 = ( 0
𝐴11

).                           (43) 

 

Here,  𝜆1 and 𝜆2 denote the eigenvalues and 𝐴11 and 𝐴22 are the arbitrary constants. For 

simplicity, we take the values of 𝐴11 and 𝐴22 equal to one. Using Eq. (43), the diagonal matrix  𝜅 

and the transformation matrix [A] can be written as 

𝜅 = [
𝑃𝑒𝛽1(𝑠) 0

0 𝑃𝑒𝛽2(𝑠)
] ,                        𝐴 =   [

1 0
−𝑝,2𝑃𝑒Ψ(𝑠)

𝑃𝑒𝛽1(𝑠)−𝑃𝑒𝛽2(𝑠)
1

].                                           (44) 

 

The matrix [A] is then used in the following linear transformation [22]. 

 

(𝑐1̅
𝑐2̅

) = [
1 0

−𝑝,2𝑃𝑒Ψ(𝑠)

𝑃𝑒𝛽1(𝑠)−𝑃𝑒𝛽2(𝑠)
1

] (𝑏1
𝑏2

).                                                                                               (45) 

 

Applying the above linear transformation on Eq. (41), we get 

 

𝑑2

𝑑𝑥2 (𝑏1
𝑏2

) − 𝑃𝑒
𝑑

𝑑𝑥
(𝑏1

𝑏2
) = [

𝑃𝑒𝛽1(𝑠) 0

0 𝑃𝑒𝛽2(𝑠)
] (𝑏1

𝑏2
).                                                                    (46) 

 

Eq. (46) represents a system of two independent ODEs. Their explicit solutions are given as 

 

𝑏1(𝑠, 𝑥) = 𝐴1𝑒𝑚1𝑥 + 𝐵1𝑒−𝑚2𝑥,                     𝑚1,2 =
𝑃𝑒

2
(1 ± √1 +

4𝛽1(𝑠)

𝑃𝑒
),                               (47) 

 

and 

 

𝑏2(𝑠, 𝑥) = 𝐴2𝑒𝑚3𝑥 + 𝐵2𝑒−𝑚4𝑥,                     𝑚3,4 =
𝑃𝑒

2
(1 ± √1 +

4𝛽2(𝑠)

𝑃𝑒
),                            (48) 

 

Here, 𝐴1, 𝐴2, 𝐵1 and 𝐵2 are constants of integration which can be obtained by using the selected 

BCs. 
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3.1 Dirichlet BCs 

 

The Laplace Transformation of Eqs. (22a) and (22b) are given as 

 

𝑐𝑖̅(𝑠, 0) =
𝑐𝑖𝑛𝑗,𝑖(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
,                

𝑑𝑐𝑖̅

𝑑𝑥
(𝑠, ∞) = 0.                                                                    (49) 

 

On using the transformations in Eq. (45), Eq. (49) yields 

 

𝑏̅1(𝑠, 𝑥 = 0) =
𝑐𝑖𝑛𝑗,1(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
,                

𝑑𝑏̅1

𝑑𝑥
(𝑠, ∞) = 0.                                                           (50) 

𝑏̅2(𝑠, 𝑥 = 0) =
𝑐𝑖𝑛𝑗,2(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
+

𝑝,2𝑃𝑒Ψ(𝑠)

𝑃𝑒𝛽1(𝑠)−𝑃𝑒𝛽2(𝑠)
𝑏̅1(𝑠, 𝑥 = 0),        

𝑑𝑏̅2

𝑑𝑥
(𝑠, ∞) = 0.                  (51) 

 

After applying these boundary conditions on Eq. (47), the values of 𝐴1 and 𝐵1 are obtained as 

 

𝐴1=
𝑐𝑖𝑛𝑗,1(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
,        𝐵1 = 0.                     (52) 

 

Thus, Eqs. (45), Eq. (57) and Eq. (52) give 

 

𝑐1̅(𝑠, 𝑥) =
𝑐𝑖𝑛𝑗,𝑖(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
𝑒𝑚1𝑥.                                                      (53) 

 

The value of 𝑚1 is given by Eq. (47) for the upper negative sign. Similarly, on using Eq. (51) in 

Eq. (48), we get the values of 𝐴2  and 𝐵2  as follows: 

 

𝐴2 =
(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
[𝑐𝑖𝑛𝑗,2 +

𝑝,2𝑃𝑒Ψ(𝑠)

𝑃𝑒𝛽1(𝑠)−𝑃𝑒𝛽2(𝑠)
𝑐𝑖𝑛𝑗,1],           𝐵2 = 0.                                                  (54) 

 

With these values of  𝐴2and 𝐵2 and using Eq. (45) in Eq. (48), we obtain 

 

𝑐2̅(𝑠, 𝑥) =
𝑐𝑖𝑛𝑗,1(1−𝑒

−𝑠𝜓𝑖𝑛𝑗)

𝑠
(

𝑝,2Ψ(𝑠)

𝛽1(𝑠)−𝛽2(𝑠)
)(𝑒𝑚3𝑥 − 𝑒𝑚1𝑥) +

𝑐𝑖𝑛𝑗,2(1−𝑒
−𝑠𝜓𝑖𝑛𝑗)

𝑠
𝑒𝑚3𝑥.                       (55) 

 

Analytical Laplace inversions are not possible to bring back solutions in the time domain 𝜓. 

Therefore, the numerical inverse Laplace transformation is employed to find the original 

solutions 𝑐𝑗(𝜓, 𝑥) for j=1,2. In this work, an efficient numerical Laplace inversion method, based 

on a Fourier series expansion is applied as explained below [21, 24]. 

The solution in the time domain 𝑐𝑗(𝜓, 𝑥) can be obtained by using the exact formula for the back 

transformation as 
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𝑐𝑗(𝜓, 𝑥) = 𝐿−1[𝑐𝑗̅(𝑠, 𝑥)] =
1

2𝜋𝑖
∫ 𝑒−𝑡𝑠𝑐𝑗̅(𝑠, 𝑥)𝑑𝑠,       𝑗 = 1,2.

𝑣+𝑖∞

𝑣−𝑖∞
                                             (56) 

 

With 𝑠 = 𝑣 + 𝑖𝑤;   𝑣, 𝑤 ∈ ℝ. The real constant 𝑣 exceeds the real part of all the singularities of 

𝑐𝑗̅(𝑠, 𝑥). The integrals in Eqs. (23) and (56) exist for  Re(𝑠) > 𝛼 ̃ ∈ ℝ if 

(a) 𝑐𝑗 is locally integrable, 

(b) There is a 𝜓0 ≥ 0 and 𝑝, 𝛼 ̃ ∈  ℝ, such that 𝑐𝑗(𝜓, 𝑥) ≤ 𝑝𝑒𝛼̃𝜓 for all 𝜓 ≥ 𝜓0, 

(c) for all 𝜓 ∈ (0, ∞) there is a neighborhood in which 𝑐𝑗 is of bounded variation. 

 

In the following we always assume that 𝑐𝑗 fulfils the above conditions and in addition that there 

are no singularities of 𝑐𝑗̅(𝑠, 𝑥) to the right of the origin. Therefore, Eqs. (23) and 56) are defined 

for all 𝑦 > 0. The possibility to choose 𝑣 > 0arbitrarily, is the basis of the methods of Durbin 

[23]. The integral in Eq. (56) is equivalently expressed in the interval [0, 2T] as  

𝑐𝑗(𝜓, 𝑥) =
𝑒𝑣𝜓

𝜋
∫ [𝑅𝑒{𝑐𝑗̅(𝑠, 𝑥)} cos(𝑤𝜓) − 𝐼𝑚{𝑐𝑗̅(𝑠, 𝑥)} sin(𝑤𝜓)]𝑑𝑤.

∞

0
                                    (57) 

 

Durbin derived the following approximate expression for Eq. (57): 

𝑐𝑗(𝜓, 𝑥) =
𝑒𝑣𝜓

𝑇
[−

1

2
𝑅𝑒{𝑐𝑗̅(𝑣, 𝑥)} + ∑ 𝑅𝑒 {𝑐𝑗̅ (𝑣 + 𝑖

𝑝𝜋

𝑇
, 𝑥)} cos (

𝑝𝜋𝜓

𝑇
) − ∑ 𝐼𝑚 {𝑐𝑗̅ (𝑣 +∞

𝑝=0
∞
𝑝=0

𝑖
𝑝𝜋

𝑇
, 𝑥)} sin (

𝑝𝜋𝜓

𝑇
)].                                                                                                                   (58) 

 

In the numerical computations, the infinite series in Eq. (58) can only be summed up to a finite 

number 𝑁𝑝 of terms only. Thus, a truncation error occurs in the numerical computations. In this 

work, the numerical Laplace inversion formula in Eq. (58) is applied to obtain the time domain 

solution 𝑐𝑗(𝜓, 𝑥) by considering  𝑁𝑝 = 103.        

 

4. NUMERICAL TEST PROBLEMS 

By considering multiple test problems, the derived semi-analytical solutions described in the 

previous sections were examined. For verification, the numerical solutions are compared with the 

derived semi-analytical solutions of two-component of the same model. These numerical 

solutions are obtained by implementing a high resolution finite volume scheme (HR-FVS) of 

Koren [22]. A general collection of essential model parameters employed in the test problems is 

provided in Table 1. In order to obtain consistent results, the values for these parameters were 

taken in typical ranges. The assumption has been made for 𝐷𝑒𝑓𝑓,𝑖 and 𝑘𝑒𝑥𝑡,𝑖 tobe equal for all 

components. 
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4.1 Linear irreversible reaction 

In this section, the semi-analytical and numerical solutions of the model equations Eqs. (1)- (4) 

are compared for the considered irreversible reaction in the solid phase. The results obtained 

illustrate the effects of reaction rate constant  𝜔1, boundary conditions, Peclet number 𝑃𝑒, intra-

particle diffusion resistance 𝜂 and film mass transfer resistance 𝜁𝑃 on the concentration profiles. 

Figure 1 displays the effects of injected sample volume on the concentration profiles. 

Concentration profiles are plotted at the column outlet when a rectangular pulse of finite width, 

is injected into an empty column using Dirichlet BCs (𝑐i𝑛𝑗,i = 0.5𝑔/𝑙 for 𝑖 = 1,2). In Figure 

1(a), the same amount of injections shall be taken for both components (i.e.𝑐i𝑛𝑗,1 = 0.5𝑔/𝑙, 

𝑐i𝑛𝑗,2 = 0.5𝑔/𝑙) together with the constant reaction rate 𝜔1 = 0.1. The quantity of the product 

(component 2) increases as a result of the conversion of the reactant (component 1) to the 

product by the irreversible reaction. Contrarily, in Figure 1(b), the amount of product 

(component 2) is𝑐i𝑛𝑗,1 = 0.25𝑔/𝑙, while the injection amount for reactant (component 1) is 

𝑐i𝑛𝑗,1 = 0.5𝑔/𝑙,. Here, the same quantity of reactant (component 1) is transformed into the 

product (component 2), so the total quantity of the drug is equal to the quantity of converted 

reactant plus the quantity of injected product. Because of the smaller amount of the product 

injected, the height of component 2 in Figure 1(b) is less than that in Figure 1(a). Moreover, it 

can be seen that component 1 elutes later than component 2 because of a variety in their affinities 

(i.e 𝑎1 = 2.5 and 𝑎2 = 0.5). In all the cases, the numerical solutions and semi-analytical are in 

great satisfaction with one another. 
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Figure 1(a): Irreversible reaction: Effects of injection on the concentration profiles obtained by 

Dirichlet BCs at 𝑥 = 1. Here, 𝜔1 = 0.1 & 𝜔2 = 0.05. Other remaining parameters are given in 

Table 1 

 

 
 

Figure 1(b): Irreversible reaction: Effects of injection on the concentration profiles obtained by 

Dirichlet BCs at 𝑥 = 1. Here, 𝜔1 = 0.2 & 𝜔2 = 0.02. Other remaining parameters are given in 

Table 1 
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Figure 2 illustrates the consequences of reaction rate constant 𝜔i, 𝑖 = 1, 2 on the concentration 

profiles. The concentration profiles are plotted by employing Dirichlet BCs and taking 𝜔1 as a 

parameter. Here, 𝑐i𝑛𝑗,1 = 0.5𝑔/𝑙, 𝑐i𝑛𝑗,2 = 0.5𝑔/𝑙 and 𝑐i,i𝑛𝑖𝑡 = 0.0𝑔/𝑙 were used. For this case, 

the quantity of product improves on raising the value of reaction rate constant, while the quantity 

of reactant is reducing. 

 
Figure 2: Irreversible reaction: Effects of reaction rate constant 𝜔i, 𝑖 = 1,2 on the concentration 

profiles at 𝑥 = 1, using Dirichlet BCs. Here, 𝑐i𝑛𝑗,1 = 0.5 𝑔/𝑙,𝑐i𝑛𝑗,2 = 0.5 𝑔/𝑙. The remaining 

parameters are given in Table 1. 

 

Figure 3(a) shows the influences of Biot number,𝜁𝑃 =
𝑘𝑒𝑥𝑡𝑅𝑝

𝐷𝑒𝑓𝑓,𝑖
, on the concentration profiles of 

both components for different three values of 𝜁𝑃.For 𝜁𝑃 = 50, for 𝜁𝑃 = 05, both components 

have steeped profiles whereas the peak profiles are broadened. Figure 3(b) investigates the 

impacts of intra-particle diffusion𝜂 on the concentration profiles. The concentration profiles for 

both components are plotted for a fixed 𝑃𝑒 = 125 and practising some distinct values of 𝜂. For 

𝜂 = 0.02, there is a reduction of column retention time for both components because of the slow 

diffusion rate, whereas, for 𝜂 = 20 the retention time for both components improves. In addition, 

the rising value of 𝜂 = 0.02improves the separation of both components. Insufficiencies in intra-

particle mass transfer resistances of both components decrease the spreading time for the 

considered fully porous adsorbents. 
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Figure 3(a): Irreversible reaction: Influences of 𝜁𝑃 on the concentration profiles. Other remaining 

parameters are given in Table 1 

 

Figure 3(b): Irreversible reaction: Influences of 𝜂 on the concentration profiles. Other remaining 

parameters are given in Table 1 
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5. CONCLUSION 

A two-component irreversible reaction for linear reactive general rate model was developed and 

solved using Dirichlet boundary condition to obtain the semi-analytical solutions. Also, the 

complete analytical solutions in the Laplace domain were obtained, by use of the Laplace 

transformation technique. The numerical Laplace inversion was employed to obtain the desired 

actual-time domain for the concentration profiles. The accuracy for the numerical results of a 

second-order finite volume scheme against semi-analytical results was conducted. Clear 

agreements between numerical and semi-analytical tests confirmed the accuracy of the analytical 

expressions and the correctness of the proposed numerical method. The derived semi-analytical 

solutions are useful tools to investigate the impact of reaction rate constants, interfacial mass 

transfer rate, adsorption affinity, and intra-particle pore diffusion on the concentration profiles. 

This analytical procedure can also be applied to the confirmation of the result obtained by the use 

of a numerical scheme carried out in this current article. 

 

Table  1: Referenece parameters used in the numerical test problems. 
Parameters Values 

Interstitial velocity 

Column length 

Effective dispersion coefficient 

External mass transfer coefficient 

Axial dispersion coefficient 

External  porosity 

Internal  porosity 

Initial concentrations 

Concentration at inlet for component 1 

Concentration at inlet for component 2 

Adsorption equilibrium constant for component 1 

Adsorption equilibrium constant for component 2 

Reaction rate constant (component 1) 

Reaction rate constant (component 2) 

Total simulation time 

𝑢 = 2.5 𝑐𝑚/𝑚𝑖𝑛 

𝐿 = 10 𝑐𝑚 

𝐷𝑧 = 0.34 𝑐𝑚2/𝑚𝑖𝑛 

𝐷𝑒𝑓𝑓 = 10−4𝑐𝑚2/𝑚𝑖𝑛 

𝑘𝑒𝑥𝑡 = 0.01 𝑐𝑚/𝑚𝑖𝑛 

𝜖 = 0.4 

𝜖𝑝 = 0.333 

𝑐𝑖𝑛𝑗,1 = 0 𝑔/𝑙  

𝑐𝑖𝑛𝑗,2 = 0 𝑔/𝑙  

𝑎1 = 2.5 

𝑎2 = 0.5 

𝜔1 = 0.1 

𝜔2 = 0.05 

𝑡𝑚𝑎𝑥 = 40 
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