EXPERIMENTAL VALIDATION OF THE HEPATOPROTECTIVE AND ANTIMICROBIAL PROPERTIES OF *Vernonia amygdalina*: A REVIEW

ATANU, Francis Onakpa
Department of Biochemistry, Kogi State University, Anyigba, Kogi State, Nigeria.

Email: atanufo@yahoo.com Phone: +234 8064925800

ABSTRACT

Cancer and hepatic disorders are two important health problems of community health enhanced by metabolic and genetic disposition of individuals. *Vernonia amygdalina* (VA) is a medicinal shrub useful for the treatment of various diseases including cancer and liver diseases. It is often utilised as edible vegetable. This review aims at logically examining experimental evidences supporting the use of *V. amygdalina* in folklore medicine. Several databases including MEDLINE and 'Google search engine' were used to retrieve recent information on *V. amygdalina* uses in ethnomedicine. Selection of literature and abstracts was done randomly by authors on the basis of their relevance to the immediate review. Search yielded 512 results; critical appraisal of results reduced the tally to 6 for anticancer properties and 5 for hepatoprotective studies respectively. Their therapeutic potencies had relevance with phytochemical content of *V. amygdalina*. The experimental results support the widely accepted hepatoprotective and anticancer properties of *V. amygdalina* in traditional medicine.

Keywords: *Vernonia amygdalina*, Hepatoprotection, Anticancer

INTRODUCTION

Non-communicable diseases such as cancer and hepatic disorders have recently received an increasing interest by scientist. Results of epidemiological studies suggest that the incidence of this disease is on the increase largely associated with dietary patterns even though they also appear to be environmentally determined. More so, it has been estimated that 35% of cancer deaths may be related to dietary factors (Paul et al., 2005). The liver is the metabolic rheostat of animals. It confers the ability to cope with a wide range of substances ranging from metabolic intermediates to xenobiotics. Its diversity in metabolism makes it susceptible to damage as well as determining the fate of potential toxicants (Gonzalez, 2005). Therefore, genotoxic compounds may act on the liver culminating in liver damage often as cirrhosis, fibrosis and at its worst hepatocellular carcinoma. Due to the polyphasic nature of cancer and hepatic diseases and its multi-etiological aspects, nutritional status of subjects may be a significant factor that confers resistance to environmental hazards.

Vernonia amygdalina is a shrub common to tropical Africa (Argheore et al., 1998). The bitter leaves are used as vegetable. Results of phytochemical analysis showed that *V. amygdalina* has rich content of saponin, sesquiterpenes and flavanoids. Some scientists have opined that the flavanoids and its saponins are the active principles which confer antioxidant and anti-tumor activities on the plant (Igile et al., 1994). Though at the moment there is paucity of data on the exact mechanism by which *V. amygdalina* elicits therapeutic effects, results of experiments conform to its folkloric use. The objectives of this review are to determine from available literature the effectiveness of *V. amygdalina* in the treatment of experimental cancer and liver damages.

MATERIALS AND METHODS

The study included works done exclusively on *V. amygdalina* using scientifically accepted agents to induce hepatotoxicity and established cancer
Table 1: Selected studies supporting the anticancer activities of *V. amygdalina*

<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro test for inhibition cell growth</td>
<td>Cancer cell lines</td>
<td>Hexane, butanol and ethyl acetate extracts of V. amygdalina inhibited DNA synthesis</td>
<td>Oyugi et al., 2009</td>
</tr>
<tr>
<td>In vitro anti-proliferative study</td>
<td>BT-549 Breast cancer cells</td>
<td>V. amygdalina inhibited cell proliferation and DNA synthesis</td>
<td>Grasham et al., 2008</td>
</tr>
<tr>
<td>In vitro viability test on cancer cells</td>
<td>MCF-7 Breast cancer cells</td>
<td>V. amygdalina has minimal DNA damaging effects and reduces cell viability</td>
<td>Yedjou et al., 2008</td>
</tr>
<tr>
<td>In vitro assessment of cell membrane permeability and efflux</td>
<td>MCF-7 Breast cancer cells</td>
<td>V. amygdalina compromises cell membrane permeability/potential, efflux, cytosolic activities and cell death</td>
<td>Opata and Izevbigie, 2006</td>
</tr>
<tr>
<td>In vitro determination of molecular targets of inhibitors in V. amygdalina</td>
<td>MCF-7 Breast cancer cells</td>
<td>V. amygdalina exhibits cytostatic activities. ERK signalling pathways are intracellular targets of V. amygdalina.</td>
<td>Izevbigie et al., 2004</td>
</tr>
<tr>
<td>Quantitative measurement of gene expression of phase 1 and 2 enzymes in response to V. amygdalina</td>
<td>MCF-7 Breast cancer cells</td>
<td>V. amygdalina induces CYP 3A4 and microsomal epoxide hydrolase gene expression</td>
<td>Howard et al., 2003</td>
</tr>
</tbody>
</table>

In *vivo* and *in vitro* studies on the plants extract were considered however, data on clinical studies were not included. Databases such as MEDLINE and ‘Google search engine’ were used to retrieval of data. Search words used included *Vernonia amygdalina*, tumor, cancer, liver, hepatotoxicity and hepatoprotection.

The data obtained were extracted and classified based on experimental models used, aim of study and results obtained. Randomly selected literatures by the two authors where systematically put together to eliminate conflicts in data selection.

RESULTS

A total of 512 abstracts were retrieved from the databases amongst which where two reviews and six full text research articles. Six were eventually selected for their relevance as an anticancer and five relating to hepatoprotection.

41 were miscellaneous literatures while 460 were not relevant to this review. The results of the selected studies are presented in Tables 1 and 2. Tabulation is based on the methods used in the experiments, models used and results obtained by referenced authors. The methods for the preparation of extracts of *V. amygdalina* conform with standard scientific measures therefore, results from their usage were considered reliable.

DISCUSSION

The results of this study indicates clearly the efficacy of *Vernonia amygdalina* in curtailing the emergence and spread of cancer as well as protecting the liver from injury arising from physical and chemical assaults. *V. amygdalina* is prescribed by herbalist non-specifically for any disease type because of its effectiveness in the treatment of a wide range of ailments. Phytochemical studies on the plant reveal the
Table 2: Selected studies supporting the hepatoprotective activities of *V. amygdalina*

<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-vivo effects of pre-treatment with V. amygdalina against CCl<sub>4</sub></td>
<td>Rats</td>
<td>Methanolic extracts of V. amygdalina administered for 5 weeks before CCl<sub>4</sub> challenge ameliorated the increase in liver injury marker enzymes</td>
<td>Adesanoye and Farombi, 2009</td>
</tr>
<tr>
<td>In-vivo hypolipidemic effects of V. amygdalina pre-administration with high fat diet</td>
<td>Rats</td>
<td>V. amygdalina reduced the controlled lipid content of liver and serum</td>
<td>Adaramoye et al., 2008 a</td>
</tr>
<tr>
<td>In-vivo effects of V. amygdalina on irradiation induced liver damage</td>
<td>Rats</td>
<td>V. amygdalina increased antioxidant defence systems and protects the liver from radiation induced damages</td>
<td>Adaramoye et al., 2008 b</td>
</tr>
<tr>
<td>In-vivo hepatoprotective effects of V. amygdalina against acetaminophen-induced hepatic damage</td>
<td>Mice</td>
<td>V. amygdalina suppresses hepatotoxicity by attenuating lipid peroxidation and oxidative stress</td>
<td>Iwalokun et al., 2006</td>
</tr>
<tr>
<td>In-vivo test for the hepatoprotective effects of sesquiterpene lactone content of V. amygdalina on CCl<sub>4</sub> induced liver damage</td>
<td>Rats</td>
<td>Sesquiterpene lactone of V. amygdalina has anti-hepatotoxic activities comparable with that of Kolaviron an extract of G. kola</td>
<td>Babalola et al., 2001</td>
</tr>
</tbody>
</table>

The triterpenes play dominant roles in determining fate of cancer cells used in various studies. Anti-oxidation by plant extracts is an important mechanism for disease treatment. Right now there is an increasing awareness implicating oxidative stress in several pathologies. The antioxidant potential of the flavanoids of *V. amygdalina* possibly attenuates the oxidative stress posed by chemical agents responsible for hepatic damages. It is conceivable that *V. amygdalina* may actively participate in the clearance of harmful (to the liver) and carcinogenic xenobiotics by the induction of phase 2 enzymes (Howard *et al.*, 2003). Parallel to that may be the up-regulation of the oxidant threshold of cancer cells by *V. amygdalina* which results in the inhibition of their growth, activation of the ERK signalling pathways and eventual death. Disruption of cellular and organellar membranes has been a chemotherapeutic target in the past decade. Membrane potential and the bioenergetic profile of cells are the life wire that guarantees their survival. Hence, permeabilisation of membranes and altered efflux systems conforms to the anti-cancer mechanism elicited by other accepted anti-cancer plants (Opata and Izevbigie, 2006). More so that complementary is encouraged, radiotherapy could be concurrently used with administration of *V. amygdalina* to alleviate the negative effects of radiation on cells (Adaramoye *et al.*, 2008 a, b). It is interesting to note that *V. amygdalina* is a common plant and even though continuous consumption of this plant is necessary to obtain medicinal results but it is nutritionally achievable.

Conclusion: We recommend an increased attention on the research of *V. amygdalina*.

Researchers herein reviewed points at the possibility of identifying potential chemotherapy for cancer and hepatic disorders without toxic effects associated with the consumption of other medicinal plants.

REFERENCES

