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Semi-Latin squares and related 

“objects”: Statistics and Combinatorics 

aspects 

BY  

PROF. POLYCARP .E. CHIGBU 
 

Mr. Vice Chancellor Sir, 

Distinguished Colleagues, 

Ladies and Gentlemen, 

Lions and Lionesses, 

 

1. Introduction 

 

1.1 Preamble 

May I start my presentation today by thanking God 

Almighty and the Vice Chancellor for this opportunity 

of giving the 43
rd

 inaugural lecture of our University 

on my 50th birthday, the first to be given in the year 

2009 and not too long a time from the day my 

professorship at the University of Nigeria was formally 

announced. 

 

Attaining the position of a Professor in a University of 

our kind would naturally require that one has 

contributed to knowledge in the various aspects of 

his/her discipline. Hence, it was not easy to choose 

what to embody and what not to embody in this 

lecture, especially as this is the first inaugural lecture 
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from the department of Statistics, University of Nigeria 

and the third from our Faculty of Physical Sciences. 

Basically, the topic of my lecture is research-oriented.  

I have therefore considered the mode of its delivery to 

be more or less purely academic. However, I would 

most of the time endeavour to present it in simple 

Statistical and Mathematical language without 

distorting the real essence of the subject matter 

contained therein. 

 

With regard to the topic of this lecture, the meanings of 

the main terminologies: Statistics, Combinatorics and 

semi-Latin square would be presented in sections 2 and 

Meanwhile, the word “object” as used in the topic and 

in this work simply means configurations. I shall have 

to give the implication of the term configuration more 

formally in section 2 but in the meantime, we bear in 

mind the following definition of configuration which 

pertains to this work and also given in The Concise 

Oxford Dictionary: “form, shape, or figure resulting 

from an arrangement of parts or elements in some 

manner” (Fowler and Fowler (1990)). 

 

1.2 Basic Concepts 

Before I get involved with discussing the main subject 

matter of this lecture, I crave your indulgence to take 

some time to briefly discuss its rudiments. 

 

As you may be aware, the word statistics is usually 

used in two senses: first, it means numerical data 
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relating to any field of endeavour, be it the 

Arts/Humanities, Sciences/Engineering or what have 

you; second, it refers to the scientific process for 

collecting, understanding, analyzing and interpreting 

numerical and non-numerical data. For the purpose of 

the second, let us consider that there exist two sets of 

people on earth: the “Scientists” and the Statisticians. 

While a “Scientist” is anybody who requires his/her 

statistical problem to be solved, the Statistician is 

anybody that has undergone the required standards of 

training in statistics for becoming and possesses the 

required skills of a Statistician; which also lends 

credence to statistical consulting. 

 

Statistics is also an inductive science, which attempts 

to generalize concepts based on particular cases; deals 

with the whole based on information from a part; and 

draws inferences about populations on the basis of 

samples. A special ingredient for achieving these is 

randomization (a process whereby every member or 

item of a population of interest has equal chance of 

being observed as a member or item of an observable 

sample or part under investigation). 

 

As also orchestrated by Nduka (2007), statistics as a 

subject is involved in almost all fields of endeavour, 

learning or study such that it is, for instance, studied as 

Biometrics in the Biological Sciences, Econometrics in 

Economics, Social Statistics in the general Social 

Sciences, Medical Statistics in the Medical Sciences, 
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Environmental Statistics in Environmental Sciences, 

Official Statistics in Governmental and Non-

governmental agencies, just to mention but a few. 

Statistics as a discipline studied at both undergraduate 

and postgraduate levels at the University of Nigeria 

and many tertiary level institutions in different parts of 

the world has among others the stress area known as 

Design and Analysis of Experiments often called 

Experimental Design or Design of Experiments (DOE). 

 

While, the analysis phase of DOE involves the 

illustration of techniques, which enable the 

experimenter to analyze the experimental information 

in, say, a first- or second-order response (regression) 

model, the design phase involves the presentation and 

illustration of experimental layouts for the fitting of 

these models. 

 

Historically, DOE and another stress area known as 

Regression analysis have developed separately. But it 

turns out that one of the best ways of appreciating the 

power of designed experiments is by first 

understanding regression analysis. Regression models 

are a statistical way of characterizing relationships 

between variables. A regression model can be defined 

in words as: 

 

Y = function of X + random variation; 

Symbolically written as: 

Y = f(X) + ε 
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where Y represents a response variable called the 

dependent variable, X represents a predictor variable 

called an independent variable, f(X) represents the 

systematic or repeatable part of the relationship 

between X and Y, ε represents the variation in Y which 

is not related to X or to any other measurable variable. 

 

The main essence of DOE therefore is the designing of 

efficient and/or “best” experiments since life itself is 

full of experiments and experimentation on daily basis 

and whatever experiment that is being designed would 

need to be analyzed in some context by adopting 

certain appropriate techniques or criteria for 

interpretation. DOE entails the Statistics and 

Combinatorics aspects studied as Statistical and 

Combinatorial designs, respectively. 

 

We all know that the term statistical is an adjective of 

the word statistics. However, the statistical design 

studies generally involve 

 

(i)   the determination of the relationships or 

otherwise between variables, attributes, 

criteria, properties or factors as might from 

time to time be represented by one 

regression (design) model or another; 

(ii)    the comparison of variables, attributes, etc, 

of an idealized representative model with 

the view of determining their effects in the 
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representative model and/or the closeness of 

this model to a real life situation. 

 

Contextually, it entails the hierarchical classification of 

a collection of configurations or design arrays, which 

possess a certain class of properties satisfying a 

particular design model, based on the comparison of 

variances of their treatments’/treatment contrasts’ 

estimates or some other conditions which not only 

relate to the variances but on the nature of the 

incidence of treatments to the experimental units 

(plots). 

 

The statistical design is usually presented from the 

standpoint of the general linear model, wherefrom least 

squares estimators are developed and discussed using 

possibly the notation of matrices. It also involves the 

use of designs (factorial and fractional factorial) to fit 

regression models with their attendant analysis-of-

variance (ANOVA). 

 

The term combinatorial is indeed a mathematical 

adjective pertaining to the word combination, which 

simply relates to the combination of items. The 

combinatorial design basically entails the exploitation 

of certain mathematical properties (or patterns) of 

configurations (designs), which are analogous to 

standard statistical basis of comparison or judgment 

(popularly called optimality criteria), in the making of 

good or “best”choices. 
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The combinatorial design involves studying the 

patterns of the application of treatments to plots in an 

experimental layout. In this regard, it can then be easily 

said that a particular pattern (graphically or otherwise 

or according to the level of treatment concurrences in 

plots) is better than another. To conduct meaningful 

research works in combinatorial design, one has to 

have full grip of the mathematical concepts of group 

and graph theory among others, which form part of the 

curriculum of a B.Sc. programme in mathematics. 

 

I have taken all this time to make it clear that while the 

“Scientists” most times apply already-constructed 

designs (known in the literature as Classical designs) to 

their problems for analyses and interpretation, the 

Statisticians would most of the times be bothered with, 

among others, conceiving and constructing new 

designs (often called Optimal designs) for 

experimentation. 

 

Thus, it is worthy to mention here that in many 

national and international conferences in statistics, 

topics on combinatorial designs or even general DOE 

are difficult to be accommodated appropriately for 

either Invited or Contributed presentation especially 

due to the fact that the right audience would hardly be 

found. Hence, there now exists a lot of combinatorial-

based and DOE conferences where works on general 

DOE and especially combinatorial DOE gather the 
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right calibre of attendees with the necessary skills to 

appreciate research outputs therefrom. 

 

Indeed, the way and manner inputs (treatments) of an 

experiment are combined in application to plots 

determines the efficacy of the experiment and the 

fruitfulness of the output (yield). 

 

There is no gainsaying the fact that the terms treatment 

and plot commonly used in DOE today originated from 

the interest of early British/European researchers like 

F. Yates and R.A. Fisher in this area whose interest 

was mainly on agricultural experimentation that could 

lead to bumper harvest amidst famine after the World 

wars of the 1930’s and 1940’s. 

 

Mr. Vice Chancellor Sir, I have been conducting 

research in the area of statistical and combinatorial 

DOE for the past twenty two years and the subject 

matter treated here bothers on about 45% statistical 

DOE and 55% combinatorial DOE. The motivation for 

the higher proportion of my works on combinatorial 

DOE came from 

 

(i)     the need to construct new designs (forms of   

arranging/applying treatments to plots) to 

meet the need for solving new problems in 

this area; and 
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(ii      the supervisor of my research degree who is 

a properly-trained Abstract Algebraist-cum- 

Statistician. 

 

From the foregoing, therefore, it is easy to see that, 

beyond the earlier senses I have attempted to describe 

Statistics, it is on the whole, a science of the “best” 

decision-making in experimentation. While a popular 

dictum states that Classical statistics dwells on making 

valid decisions under uncertainty, I will contextually 

state here that the aspect of statistics considered in this 

work specifically dwells on making optimum/optimal 

choices under many possibilities. 

 

2. Some Relevant Terminologies and their 

Meanings 

 

2.1  Experiment 

Even though an experiment could simply be literally 

called a test: see Montgomery (1991), an experiment is 

a set of procedures which are carried out under a set of 

conditions, and which may occur repeatedly for a 

result: see, for example, Arua et al (2000). 

 

In an experiment, one or more variables (or factors) are 

deliberately changed in order to observe the effect the 

changes have on one or more response variables. 

 

2.2 Experimental Unit (Plot) 

This is the smallest thing to which a treatment could be 
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applied. However, when a response is measured from 

this smallest unit, it is called an observational unit: see, 

for example, Bailey (2008). 

In a real-life situation, the meaning of an experimental 

unit may vary from experiment to experiment. For 

example, while in an experiment involving the growing 

of varieties of a crop in genuine plots in a field, the 

experimental units are the genuine plots, the 

experimental units are the sub-plots in an experiment 

involving the growing of the same varieties of crop in 

whole-plots with fertilizers applied to sub-plots: see 

Bailey (2008). 

 

2.3 Experimental Treatment 

An Experimental Treatment is the entire description or 

totality of what is applicable to a plot at a given place 

or time, which gives rise to a measurable observation. 

 

In the two real-life experiments of section 2.2, the 

experimental treatments are respectively, variety of 

crop and variety-fertilizer combination. 

 

2.4 Design 

Let W denote the set of plots of an experiment while T 

denotes a whole set of its treatments. A design can 

easily be said to be the assignment of treatments to 

plots, i.e. it is a function, f, which maps the elements of 

W to the elements of T (f: Ω → T). This implies that a 

plot ω E Ω, say, gets treatment, f(ω), during 

experimentation. 
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Bailey (1989) also defines design as a mapping or 

function, f, of the experimental units (plots), Ω, to 

treatments, T, in such a way that, treatments are 

allocated to plots. This definition seems to be circular 

in meaning, but it works well enough in practice. 

 

In this regard, therefore, the usual aim of designing an 

experiment is to choose f such that certain 

combinatorial properties or patterns are satisfied or 

exploited, as the case might be. 

 

2.5 Statistics and Statistical design 

In section 1.2, some attempts have been made to define 

Statistics literally, technically and contextually. Here, 

we further state that in every statistical design, 

experimenters are usually interested in knowing about 

the effect of treatments applied and the plots on which 

they are applied. Usually, an experimenter has more 

control on the set of treatments applied than on the 

plots that receive these treatments. 

 

Another usual issue of interest to experimenters is the 

allocation of treatments to plots: the randomization of 

this activity gives the statistical validity of the 

experiment, which forms the basis of any statistical 

design. 
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Thus, as highlighted in section 2.4, each design 

consists of two sets and a function between them. The 

sets are: 

·     a set that consists of treatments, denoted by T, 

say, and  

·     a set of experimental units, denoted by Ω. 

These two sets are always finite. 

 

On the whole, therefore, suppose Ω is a set of “things” 

(persons, animals, plants, machines, small portions of 

land, etc) upon which data are to be measured; a factor 

on Ω is a function, f, on Ω where we are interested not 

so much in the values of the function, f, as in which 

“things” have the same value of f. 

 
Example: In a medical experiment involving a set, Ω, 

of persons, f(person) is the drug given to that person. 

To compare (the effect of) drugs, therefore, we need to 

know who and who had the same drug. The set of 

“things” with one given value of f is a subset of Ω. All 

such subsets form a partition of Ω and every”thing” is 

in one, and only one such subset: see, for example, 

Chigbu (1998a). In this regard, we shall always assume 

that the yield on plot ω, yω, is given by 

yω = pω + tf(w), …………………………………(1) 

where tf(w) is a constant depending on the treatment, 

f(ω), applied to plot ω, pω is a random variable, 

depending on ω: see Chigbu (1995, 1998a). 
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Equation (1) is regression-based which leads to 

modeling statistical (regression-based) designs solved 

by the usual traditional regression analysis principles. 

This forms the basis of the Statistics aspect of our 

discussion here. 

 

2.6 Combinatorics and Combinatorial design 

The term Combinatorics was defined by Street and 

Street (1987), section 1.1 as “the branch of 

mathematics which deals with the problems of 

selecting and arranging objects in accordance with 

certain specified rules”. However, in studying 

Combinatorics, we always deal with Configurations. 

 

Furthermore, Berge (1971, page 2) regarded 

Combinatorics as that which counts, enumerates 

(constructs and classifies), examines and investigates 

the existence of Configurations with certain specified 

properties or characteristics. In doing all these, the 

knowledge of the concept of isomorphism and 

isomorphism classes is quite essential. 

 

It is not my idea to bore you with the details of 

technical mathematical terms, but briefly speaking and 

contextually, the isomorphism of two configurations 

implies their sameness. The definition of isomorphism 

as it pertains to semi-Latin squares would be given in 

section 3.  
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Hence, the Combinatorics aspects of the work reported 

in this lecture specifically involve the application of 

group and graph theory ideas in the construction and 

classification of semi-Latin squares and related 

“objects”. These involve selecting and arranging the 

treatments of a semi-Latin square, say, based on the 

elements of the Symmetric group, Sn, and in accordance 

with the definition and constraints of a semi-Latin 

square. Eventually, different configurations and 

combinatorial patterns of the squares are grouped into 

two kinds of isomorphism classes based on their 

graphs ((treatment) variety-concurrence), family of the 

number of treatment-pairings which occur different 

number of times within the blocks of the squares 

known as Combinatorial parameters’ method: see 

Preece and Freeman (1983), statistical design 

properties and the permutation sets associated with the 

arrangement of the treatments in the squares. 

 

At this juncture, giving an illustrative example would 

help out in fixing the ideas of Combinatorial design 

fast. Thus, an experiment was conducted in an 

experimental area consisting of two fields, each 

divided into three strips of land, to compare three 

different varieties of corn: Red, White and Yellow, in 

combination with four amounts of phosphate fertilizer: 

0, 70,140 and 210 (all in kg/hectare). Each strip was 

made up of four plots. The measured yield or response 

of this experiment was the total weight of the starch 

harvested from each plot. 
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The cultivation of the varieties of corn in the farms was 

mechanized such that varieties were sown on whole-

strips and not in small areas due to practical 

possibilities. On the other hand, it was very convenient 

to apply the phosphate fertilizers to smaller areas of 

land within a whole-strip, here known as plots: see, for 

example, Bailey (2008). A typical layout of this 

experiment is given in Figure 1. 

                                                               

140 0 210 

70 140 70 

0 70 140 

210 210 0 

   ↑         ↑           ↑              ↑          ↑          ↑ 

Red  Yellow  White     Yellow   Red    White 

 

Figure 1: A typical layout of the Cultivation of 

Varieties of Corn 

 

Considering Figure 1 for the above illustrative 

example, we notice the existence of pattern and the 

lack of it. The existence of pattern is depicted by the 

fact that each amount of fertilizer is applied to one plot 

per strip while each variety is applied to one strip per 

field. This pattern and studies pertaining to it manifests 

the combinatorial design investigation for this 

experiment. On the other hand, the existence of lack of 

pattern is depicted by, noting that there exists neither 

any systematic order in allocating the varieties to strips 

0 70 140 

70 140 0 

210 0 210 

140 210 70 
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in each field nor any systematic order in the allocation 

of the amounts of fertilizer to plots in each strip. 

Having mentioned that Figure 1 is a typical layout of 

the experiment, it means that there could be other 

layouts, which derive their credence from some 

randomization. However, the lack of pattern of the 

above illustration, which is elicited by randomization 

subtly make for the statistical design discussed earlier 

in section 2.5. 

 

Hence, Combinatorial design, as an integral aspect of 

the study of DOE (see, for example, Bailey (1991)), is 

“a way of choosing, from a given finite set, a collection 

of subsets with particular properties” (Street and Street 

(1987)). 

 

The general algebraic connections between the analysis 

procedures of Statistical and Combinatorial designs are 

articulated in Chigbu (1998a). 

 

3. What is a semi-Latin square? 

 

3.1 Definition 

With reference to the various ways the term semi-Latin 

square is defined in, for instance, Preece and Freeman 

(1983), Bailey (1988, 1990 and 1992), we hereby 

define a semi-Latin square as follows: An (n x n)/k 

semi-Latin square is an arrangement of nk symbols 

(treatments) in an (n x n) square array such that each 

row-column intersection contains k symbols and each 
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symbol occurs once in each row and each column: see, 

for example, Chigbu (1995). 

 

 

 

 

 

 1 … n 

1 (1, …, k) … (1, …, k) 

 

. 

. 

. 

. 

. 

. 

… 

… 

… 

. 

. 

. 

n (1, …, k) … (1, …, k 

 

Figure 2: An array for an (n x n)/k semi-Latin square 

 

In Figure 2, (1, …, k) indicates the size, k, of each 

block but not the actual symbols of a semi-Latin 

square. For convenience, a row-column intersection of 

a semi-Latin square is also called a block as long as no 

ambiguity of usage is introduced by doing this. 

 

When n = 3 and k = 2, a typical semi-Latin square 

would be of the form, 

 

1 2   3 4 5 6 

3 4  5 6 1 2 

5 6   1 2 3 4 
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Figure 3: A typical semi-Latin square for n = 3 and k = 2 

 

where the symbols from 1 to 6 represent the six 

treatments of the square. 

 

 

 

3.2 Historical Perspective 

Here, I shall only give the historical background of 

semi-Latin squares up to 1992 when I first got involved 

with it. 

 

Firstly, the origin of the Latin square could be traced 

back to the time experimenters in agricultural trials 

started considering two or more systems of blocking at 

once, which also involved the Graeco-Latin squares. 

However, the Graeco-Latin squares originated by the 

year 1782 when Euler invented the popular problem of 

thirty six army officers who were chosen, six from 

each of six different regiments, so that the selection 

from each regiment included one officer from each of 

six ranks, even though he later conjectured the 

impossibility of such arrangements: see Street and 

Street (1987), section 1.1. Long after 1782, R.A. Fisher 

called each of the two arrays that formed the Graeco-

Latin squares, which Euler thought of adopting in 

solving his problem, the Latin square. Later on in 

1926, Fisher gave information on the usage of Latin 

squares in experimental design problems. 
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General semi-Latin squares were so named by Yates 

(1935). Before this time, an example of this kind of 

arrangement for n = 5, k = 2 was given and called 

equalized random blocks: see “Student” (1931). Many 

agricultural and statistical writings of the 1930’s gave 

different examples of this kind of arrangement. One 

mention of semi-Latin squares in the 1940’s was by 

Ma and Harrington (1949) who studied the semi-Latin 

square design in agricultural field experiments. Preece 

and Freeman (1983) cited many German and Polish 

workers who, during the 1950’s and early 1960’s, used 

semi-Latin squares under the names Lateinisches 

rechteck (Latin rectangle) and Cuadro latino 

modificado (modified Latin square), respectively, in 

agricultural experiments. Harshbarger and Davis 

(1952) called the (n x n)/(n – 1) Trojan squares 

Latinized rectangular lattices; but Williams (1986) 

generalized their notion and called semi-Latin squares 

Latinized incomplete-block designs. Andersen and 

Hilton (1980) called semi-Latin squares (1, 1, k) Latin 

rectangles, while Rasch and Herrendorfer (1982, page 

51) called them pseudo latin squares. 

 

It can therefore be easily understood that semi-Latin 

squares have been used for agricultural 

experimentation since the inception of the last century. 

 

3.3 Uses of semi-Latin squares 
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The statistical uses of semi-Latin squares are 

summarized in Preece and Freeman (1983) and Bailey 

(1992). One simple use of semi-Latin squares given by 

Bailey (1992) is in Consumer Testing where 8 new 

types of Vacuum Cleaners are tested by each of 4 

housewives per week over a 4-week period. In this 

case, the plot is one cleaning session per housewife 

(two in each week). The treatments are the 8 Vacuum 

Cleaners, rows represent weeks and columns represent 

housewives. 

 

A typical layout and square (configuration) for this use 

of semi-Latin square are shown in Figures 4 and 5, 

respectively. 

 

             Housewives                              Housewives 

 
Figure 4: Layout of (4 x 4)/2        Figure 5: A (4 x 4)/2 

semi-Latin for the Consumer         semi-Latin square 

Testing Experiment 

 

Each position marked with a dash in Figure 4 

accommodates a particular Vacuum Cleaner while the 

symbols in each rowcolumn intersection of Figure 5 

represent different Vacuum Cleaners. Also Figure 5 is 

a typical configuration as there are other possible 

 



 21

configurations for the same description and this is why 

the configuration or arrangement of choice 

wouldpossess some inherent good statistical qualities, 

which depend on the nature of concurrences of the 

symbols in the row-column intersection of the array. 

 

Apart from the above Consumer Testing example, 

which appears to be stereotyped against women 

especially as perceived by many in the western world, 

another way semi- Latin squares could be used which 

is analogous to the above is in Car Racing 

Championship competition where Housewives in the 

above example could be represented by Car Drivers 

while Vacuum Cleaners are represented by Cars. 

Weeks could remain the same or called Months. To 

appreciate this more, we consider the kind of monthly 

competition within a year associated with the (Formula 

One) Motor Grand Prix (GP) where the Championship 

competition involves determining the best driver and 

the best make of car/car constructors in a season. Such 

an “experiment” and the “yield” therefrom could be 

arranged in a semi-Latin square formation, where the 

“yield” here is indexed on the total number of points 

derivable from podium positioning all through a given 

season. 
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Figure 6: A typical semi-Latin square for 10 Cars driven by 5 

Drivers in 5 months in a Motor GP Competition 

In Figure 6, the rows represent 5 months designated for 

the competition (one for each month), 5 columns 

represent 5 Drivers who are competing and the 10 

symbols (0 to 9) in the row-column intersections are 

the treatments of the experiment, which are the 

Constructor’s cars/types of car. 

 

Another interesting illustrative example of a possible 

use of the semi-Latin square could be pitched on an 

arrangement or design formation where the rows of the 

semi-Latin square represent Periods of Teaching: 

morning, afternoon and night, say, or School’s Term of 

teaching: first, second and third, columns represent 

Teaching Method, while treatments are people 

(students) who were taught by the use of the different 

Teaching Methods. From the earlier arrangements, I 

believe that the semi-Latin square formation for this 
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Teaching Method experiment can easily be deduced by 

anyone. 

 

There has been an increased need for semi-Latin 

squares in analyzing agricultural and other types of 

experiments. This is mainly due to their usefulness, 

especially for small values of the number of treatments, 

k, per block of the square: see, for example, Bailey 

(1988, 1990 and 1992) for the practical uses of semi-

Latin squares such as in Consumer Testing 

earlierdiscussed in this section, Glasshouse and Sugar 

beet trials, etc, Rojas and White (1957) and Darby and 

Gilbert (1958) for some other uses of semi-Latin 

squares. 

 

3.4 Methods of Construction 

The combinatorial possibilities of semi-Latin squares 

were first considered by Preece and Freeman (1983) 

who gave two methods of constructing the (4 x 4)/2 

semi-Latin squares; Trojan squares and Interleaving 

Latin squares. The method of Trojan squares involves 

taking a set of k mutually orthogonal (n x n) Latin 

squares on k disjoint sets of symbols and superposing 

them. Each of the n
2
 blocks of the square so formed 

contains the symbols, which occur in the 

corresponding blocks of the individual Latin squares. 
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Figure 7: Two mutually orthogonal (4 x 4) Latin squares 

 

 

 

 

 

 
Figure 8: A (4 x 4)/2 Trojan square 

 

By the superposition of the two (4 x 4) mutually 

orthogonalLatin squares in Figure 7, the (4 x 4)/2 

Trojan square given in Figure 8 is formed. A Trojan 

square is a special sort of semi-Latin square. 

 

The method of Interleaving squares is a generalization 

of the Trojan squares method. However, in this case, 

the k Latin squares used are not constrained to be 

mutually orthogonal. This method also involves the 

superposition of Latin squares. Bailey (1988) also gave 

some methods (inflation, explosion, superposition, etc), 

which could be used separately or in combination to 

construct semi-Latin squares. 

 

3.5     Semi-Latin squares as Incomplete-block 

designs for analysis 

In general, experimental designs need to be 

randomized in order to ensure that results of 

experiments are statistically unbiased and valid. In the 

literature, Nelder (1965), Preece and Freeman (1983) 
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and Bailey (1992) recommend that the appropriate 

randomization of a semi-Latin square involve firstly, 

randomizing independently the rows and columns, and 

then randomizing independently the plots within each 

block. Based on the randomization procedure of these 

authors, the semi-Latin squares are recognized and 

statistically analyzed as a three-block-structured 

design, where the three types of blocks are the rows, 

columns and row-column intersections. Treatments are 

orthogonal to both rows and columns, which simply 

means that the treatments of a semi-Latin square are all 

accommodated in each row and each column. 

 

Thus, a semi-Latin square is assessed for efficiency as 

abinary (0 or 1 observation of treatments in each plot) 

incomplete-block design where each row-column 

intersection is regarded as the block of its equivalent 

incomplete-block design and symbols its treatments: 

see Bailey (1988, 1992). It is a doubly-resolvable 

incomplete-block design and by ignoring its row and 

columns, it is called a quotient block design: see also 

Bailey (1988). 

 

Based on some appropriate randomization described in 

the literature (Fisher (1935) and Nelder (1965)) the 

analysis of variance of the (n x n)/k semi-Latin square 

has four strata (sources of variation). The are rows, 

columns, blocks and plots with degrees of freedom 

(n – 1), (n – 1), (n – 1)
2
 and n

2
(k – 1), respectively. 
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Bailey (1992) considered two types of models for the 

semi-Latin squares and highly recommended the one 

where the blocks having a random effect are included 

in the analysis. Thus, information about treatments is 

obtained from two strata: the blocks stratum and the 

plots stratum. The other model described by Bailey 

(1992), which ignores the blocks of a semi-Latin 

square in its analysis has no valid randomization 

procedure (Yates (1935)), in which case all semi-Latin 

squares are considered to be equally good with the 

same analysis. 

 

An assessment of different designs of the same size can 

be made based on the amount of information, which 

can be recovered from both within and between blocks. 

Therefore, a basis for comparing different non-

orthogonal block designs would need to be defined 

always and used. This basis is the efficiency factors, 

obtained only from the intra-block analysis. The 

optimality criteria, which in turn are based on the 

precision with which the estimates of treatment 

comparisons are made in the intra-block analysis, can 

be calculated from the efficiency factors. 

 

Since for a semi-Latin square, treatments are 

orthogonal to (completely exhaust) rows and columns, 

semi-Latin squares whose incomplete-block designs 

possess high efficiency factors are always desirable. 
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The Statistical design analysis for the semi-Latin 

square emphasizes more on situations when there exist 

response data while its Combinatorial design analysis 

deals more on situations when there do not exist 

response data. 

 

3.6  Semi-Latin squares as Graphs 

The graphical representations of semi-Latin squares are 

quite vital in their classification especially as it is 

known in Paterson (1983) that graphical concepts were 

adopted to check the efficiency and optimality of 

incomplete-block designs. 

 

Definition [Wilson (1990), section 1.1]: a simple 

graph, G, is a pair (V(G), E(G)), where V(G) 

(sometimes called the vertex-set) is a non-empty finite 

set of elements called vertices (nodes or points) and 

E(G) (also sometimes called the edgeset) is a finite set 

of unordered pairs of distinct elements of V(G) called 

edges (or lines). 
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Figure 9: A simple graph, G 

 

In Figure 9, V(G) = {1, 2, 3, 4} and E(G) = {a, b, c, d, 

e, f}. Most times, and as shown in Figure 9, graphs are 

defined with the restriction that any edge must join two 

distinct vertices. However, if this restriction is 

excluded such that we allow for edges to join vertices 

to themselves and multiple edges between vertices, 

then we refer to a general graph or simply a graph: see 

also Wilson (1990), section 2.2. 

Definition [Wilson (1990), section 2.3]: Suppose that 

the vertex-set of a graph, G, can be split into two 

distinct sets V1 and V2 in such a way that every edge of 

G joins a vertex of V2 to a vertex of V2, then G is a 

bipartite graph. If G can be split into k disjoint sets 

such that no two vertices in a set are joined by an edge, 

then G is a k-partite graph. 

 

When graphs with the same number of vertices and 

edges are examined an interesting problem, which 

often arises is to establish whether they are the same or 

not. It is this notion of sameness that necessitates the 

definition of the isomorphism of graphs, which has 

also been exploited in my works. 

 

Definition: A variety-concurrence graph, G(Λ), of a 

semi-Latin square, Λ, has treatments as vertices and 

the number of edges between any two treatments, s1 

and s2, say, equals the number of blocks containing s1 

and s2 in Λ. 
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When the variety (treatment)-concurrence graphs of 

semi-Latin squares are given (see, for example, Bailey 

(1992)), the general notion of relating graph theory to 

these squares is indeed implied. It is, at least, known 

that an inflated semi-Latin square could easily be 

differentiated from a Trojan square of equivalent size 

just by observing their variety-concurrence graphs. 

 

Thus, for the three (4 x 4)/2 semi-Latin squares given 

by Figures 10, 11 and 12, their corresponding variety- 

concurrence graphs are given as Figures 13, 14 and 15, 

respectively. 
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Therefore, it can easily be seen that the graphs of 

Figures 13 and 14 are quite different from the graph of 

Figure 15. 

 

4. Related “Objects” 

The word “objects” as used in quotes here simply 

implies array (arrangement of symbols or letters or 

things in rows and columns). 

In defining the semi-Latin square, it is conventional to 

disregard the order in which k symbols are written in 

any row-column intersection. This is simply because in 

adopting the semi-Latin square for the purpose of 

experimental design, individual “little” columns have 

always been assumed to have no statistical role. A 

semi-Latin square can therefore be thought of as not so 

much as an (n x nk) (n rows and nk columns) Latin 

rectangle in one combinatorial sense, but rather as an 

(n x n) square array with each row-column intersection 

containing k unordered symbols: see Preece and 

Freeman (1983). On the other hand, the individual 

“little” columns might be judged to have some 

statistical role to play in the design of experiments. 

Though some extensions are possible, much depends 

on the roles attached to the rows and sets of “little” 

columns of the squares. 

 

From the foregoing reasoning, therefore, different 

structures of designs, which are not semi-Latin squares 

per se, may arise. Each structure necessitates a 
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particular way of viewing its isomorphism. These 

structures have been defined as quasisemi-Latin square 

but called related “objects” in this work. 

 

A quasi-semi-Latin square is here defined as a 

combinatorial object whose entries are ab initio 

arranged as in the semi-Latin square formation without 

any regard to any other block structure apart from the 

one associated with the usual semi-Latin square but 

which actually has a peculiar blocking system as might 

eventually be defined as the case may be: see Chigbu 

and Oladugba (2008). 

 

5. My Research Works/Contributions on semi-Latin 

squares and related “objects” 

 

Mr. Vice Chancellor Sir, Ladies and Gentlemen, I have 

taken some reasonable time allocated to this lecture to 

attempt clearing some background due to the 

seemingly technical nature of my research activities, in 

general and my chosen topic, in particular. 

 

In this section and subsequently, I shall specifically 

highlight the initial research problems/questions that 

existed in this area before I got involved in 1992, 

present my research and other academic contributions 

as precisely as possible and discuss specific issues 

concerning statistical consulting, mishandling of 

statistical data/methods and panacea. 
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5.1 Initial Research Problems/Questions 

Before I delved into semi-Latin squares and related 

“objects”, I started my research work with Response 

Surfaces Methodology (RSM) involving Spline 

functions. Then, I met my Ph.D. supervisor – Professor 

Rosemary A. Bailey who introduced semi-Latin 

squares to me. As highlighted earlier, she is an 

Algebraist, a Combinatorialist/DiscreteMathematician, 

a Statistician, and one of the world’s foremost 

experts on experimental design. You could then 

imagine the uphill task associated with starting to work 

in this area especially with my B.Sc. and M.Sc. 

Statistics degrees’ background from University of 

Nigeria where few mathematics courses formed part of 

the curricula then. Of course, with some re-training and 

training in more Mathematics courses and by dint of 

hard work, I was able to cope. 

 

The initial research problems could be summarized as 

follows. 

(i)     Semi-Latin  squares  with n = k = 4  were 

needed for experiments involving Banana 

trees in Jamaica, as indicated by Bailey 

(1992). Trojan squares are known to be A-, 

D- and E-optimal: see Cheng and Bailey 

(1991); but no Trojan square exists if k ≥ n 

and in particular there is no Trojan square 

with k = n = 4. Bailey (1992) then gave two 

semi-Latin squares of this size with different 

sets of concurrence parameters and the same 
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good canonical efficiency factors but neither 

knew if they were optimal nor relate 

canonical efficiency factors to known 

optimality theorems to cover this type of 

design: see, for example, John and Mitchell 

(1977), John and Williams (1992), Paterson 

(1983) and Bailey (1992). 

 

(ii) No method of construction (inflation, 

superposition, etc) of semi-Latin squares in 

existence then or even a combination of them 

could be used to construct all possible semi-

Latin squares of a given size. Thus, one of 

the interests then was to give a method which 

generates systematically all possible semi-

Latin squares for given values of n and k and 

especially for n = 4 with the hope that the 

method could be extended for slightly bigger 

values of n and k. 

  

(iii)   Even  after  constructing  all  possible  semi-

Latin squares of a given size, the existing 

methods of classifying them (Combinatorial 

parameters’ and Variety-concurrence graphs’ 

methods) into different equivalence classes 

(species and transformation sets of Fisher and 

Yates (1938) and Preece and Freeman 

(1983)) were cumbersome, especially when 

many possibilities were the case. 
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n 

i = 1  

Let ai be the number of symbol-pairings that 

occur i times ( i = 0, 1, …, n) within the 

blocks of a semi-Latin squares. The family 

(a1)
       

of any semi-Latin square is known as 

the Combinatorial Parameters of that square: 

see Preece and Freeman (1983).  

 

There is no gainsaying the fact that the initial 

research problems/questions led to a lot more 

which needed to be solved then and now. 

 

5.2  My Contributions 
 

5.2.1 Statistics aspects: 
 

(i) Three A-, D- and E-optimal (4 x 4)/4 semi-

Latin squares including the two good ones 

by Bailey (1992) have been ascertained: see 

Chigbu (1995 and 1999a). The squares have 

the same canonical efficiency factors. The 

third one, which was originally found by 

me, is given in Figure 16. 

 

(ii) By considering and analyzing each of the 

semi-Latin squares of a given size as an 

incomplete-block design without response 

data and comparing them, a lemma about 

the equality of the harmonic mean of the 

canonical efficiency factors and the overall 

efficiency factor based on the average 
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variance of the pairwise treatment 

differences of a connected design is given 

and proved: see Chigbu (1998a & b). 

 

(iii) The Graeco-Latin square and the Trojan 

square designs were considered with the 

view of discriminating one kind of design 

from the other as well as highlight their 

relationships, where possible: see Chigbu 

(2001a).  

 

(iv) A program in Genstat, which is amenable to 

computing in both UNIX and DOS 

environments using the standard Genstat 

commands for calculating the canonical 

efficiency factors and the A-, D- and E-

optimality criteria of incomplete-block 

designs (IBD’s) with no response data and 

I
2
 number of blocks, where I

2
 is any 

positive integer for which an incomplete-

block design exists has been given: see 

Chigbu (2001b).  

 

(v) The “best” of the three (4 x 4)/4 semi-Latin 

squares (Figure 17) have also been 

ascertained by, analytically finding and 

comparing the variances of elementary 

contrasts of treatments for the squares: see 

Chigbu (2003).  
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(vi) A numerical approach, which basically 

involves the computation of the generalized 

inverses of the information matrices of the 

three optimal semi-Latin squares for sixteen 

treatments in blocks of size four, has been 

adopted to further classify them: see Chigbu 

(2004). 

 

5.2.2. Combinatorics aspects: 

• An (n x n)/k semi-Latin square is regarded as a 

collection of k permutations in Sn or a family of 
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nk permutations of n objects subject to certain 

definitional restrictions so that it can be 

constructed: see Bailey and Chigbu (1997) as 

well as for the following description of the 

systematically group-theoretic method of 

constructing semi-Latin squares. 

 

Thus, let L be an (n x n)/k semi-Latin square 

where we always assume that the rows and 

columns of L are labeled 1, …, n. Let X^ be the 

set of letters in L where the superscript would 

always be omitted if there is no ambiguity. Then, 

for i.,j E {1, …, n}, let Λ ij be the set of letters in 

X^ which occur in row I and column j of L, each 

letter x in X determines a permutation π
^
x in Sn 

by  

i π
^
x = j ⇔ x E Λ ij for1≤ i, j ≤ n.  

On the other hand, each permutation σ in Sn 

determines a subset Y
^
σ of X by 

Y
^
σ = { x E X: π

^
x = σ },  

We write N 
^
σ for | Y

^
σ| and therefore can clearly 

see that 

   ∑N 
 
  =k for i.,j E {1, …, n} ………………(2) 

σE

Sn
:i σ=j

  

 

Moreover, if the semi-Latin square M is obtained 

from Λ simply by relabelling the letters then 

N 
^
σ = N 

M

σ for all σ in Sn. Furthermore, given any 

family of non-negative integers (Nσ : σ E Sn ) 

^ 

σ 
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satisfying equation (2), then there exists a semi- 

Latin square, Λ, such that N 
^
σ = Nσ for all σ in 

Sn. 

 

To illustrate the above algebraic derivation so 

that you do not get put off by one of the major 

contribution of my research endeavour,  

let n = k =3 and put  

 

then,     πf = (1 2),            πg = πh (1 3 2), 

             Y(1 2) = {f},          Y(1 3 2) = {g, h}, 

             N(1 2) = 1,             N(1 3 2) = 2. 

 

Semi-Latin squares may therefore be identified 

with families of non-negative integers (Nσ : σ E 

Sn) satisfying equation (2). Since Nσ can take 

only k + 1 values, the family can be succinctly 

represented by the partition of Sn into subsets  

Λ0, Λ1, …, Λk, where 

Λr = { σ E Sn : N 
^
σ  = r }.  

 

• Semi-Latin squares of a given size were made to 

fall into strong isomorphism classes (interchange 

of rows and columns not permitted), which are 

grouped into weak isomorphism classes 
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(interchange of rows and columns permitted). 

Hence, group theory, graph theory, design theory 

and computing (via the Nauty package (McKay 

(1990)) and regarding the semi-Latin squares as 

graphs) were used to find all weak and strong 

isomorphism classes of (4 x 4)/k semi-Latin 

squares for k = 2 or 3 or 4: see Chigbu (1995) 

and Bailey and Chigbu (1997). 

 

While considering semi-Latin squares as graphs 

for isomorphism classification via the Nauty 

package, we identified five types of vertex for 

each square, namely: the row-type, the column-

type, the treatment-type, the position-type and 

the extra-type vertices. The number n of rows, 

the number k of treatments per block and the 

number nk of treatments are predetermined. 

Then, the number n
2
k of positions in a square 

and the total number υ of its vertices are 

calculated. Semi-Latin squares with different 

values of υ cannot be compared for 

isomorphism. 

 

In general, the five types of vertices are labeled 

from 0 to υ - 1, and with respect to Figure 11, for 

instance, the relevant parameters are: n = 4,  

k = 2, nk = 8, υ = 50 and the vertex-labels are: 

o    row-type: 0, …, 3, 

o    column-type: 4, …, 7, 



 40

o    treatment-type (for treatments 1, 2, 3, 4, 5, 6,     

7,8): 8, …, 15, 

o    position-type (for all the 32 entries of the 

 square): 16, …, 47, 

o    extra-type: 48, 49. 

 

 

An example of the adjacencies given for the first 

position (vertex 16) is {0, 4, 8}, which 

represents the first row, first column and first 

letter (symbol); other adjacencies are determined 

accordingly: see Chigbu (1995) and, for 

example, Bailey and Chigbu (1997). 

 

In Bailey and Chigbu (1997) also, five theorems: 

two on the strong and weak isomorphism of the 

general (n x n)/k semi-Latin squares were given 

and proved analytically; while three on the 

number of the strong and weak isomorphism 

classes for the (4 x 4)/k = 2, 3 & 4 semi-Latin 

squares were made evident and justified by some 

complete search. 

 

• Chigbu (1999b) explains what isomorphism of 

semi-Latin squares means and distinguishes 

semi-Latin squares from somewhat similar 

designs (already defined as quasi-semi-Latin 

squares in section 4) with different block 

structures. 

 



 41

Nelder (1965) defines the simple block structure 

as any arrangement involving nesting (usually 

denoted by →), crossing (usually denoted by x) 

or both with suitable brackets to indicate the 

order of combination. The arrangement of an  

(n x n)/k semi-Latin square is the same as the 

simple block structure and designs with this type 

of arrangement fall into the category of row-

column designs with nested experimental units: 

see Bailey (1993). 

 

Thus, the way the block structure of a particular 

design is defined necessitates a particular way of 

viewing its isomorphism. 

 

At present, a number of quasi-semi-Latin 

squares are being examined with the purpose of 

determining their null and full analysis-of-

variance models and strata which should be 

different from those of semi-Latin squares. 

 

• Group-theoretic lemmas which would enable 

one find the non-isomorphism classes of the  

(n x n)/k semi-Latin squares when the sizes and 

number of squares under consideration are large, 

and the computing method via Nauty is not 

readily available, were given with proofs: see 

Chigbu (2001c). 

 

• A program in Qbasic language that enables one 
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generate and construct the (n x n)/k semi-Latin 

squares which were originally generated and 

constructed via the systematic group-theoretic 

algorithm of Bailey and Chigbu (1997) has been 

given and discussed: see Chigbu and Eze (2001). 

 

 

6. My Other Academic Contributions 

 

Since my occupation is essentially Teaching and 

Research, I think that in an occasion of this sort, it is 

worthy to highlight the outcome of my research works 

in some other areas other than semi-Latin squares, my 

postgraduate supervision, conference attendance and 

teaching activities. 

 

6.1. Some Research Works on other areas of DOE 

       and Statistics 

Aside from the contributions of section 5 above, my 

research has also involved the Polynomial Spline 

functions (piecewise polynomials of degree m, say,  

(m > 0) whose functional values and first (m – 1) 

derivatives coincide at the points where they join 

called knots (Smith (1979)) where: (i) the optimal 

positions of their knots were determined by varying 

certain optimality criteria, which were also explored. 

Here, the first- and second-order polynomial spline 

regressors were established to be optimal if their knots 

are placed at equal intervals along each axis: see 
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Chigbu (1991); (ii) the performance of the design 

matrices obtained from polynomial classical and spline 

regression functions for a given experimental design 

was compared using the popular optimal design 

criteria. The polynomial classical regressors with 

observations on equally spaced levels or support points 

of the experimental design were found to be better than 

the polynomial spline regressors with respect to the 

optimal design criteria considered: see Chigbu and 

Nduka (2005). 

 

I have also done some other research works on 

Response Surfaces Methodology (RSM), which is 

popularly seen as a bridging link between the subject 

of DOE and the subject of Unconstrained 

Optimization, especially via the Super Convergent 

Line Series (SCLS) (SCLS is a line series for 

optimization in mathematical programming, with 

unique nice properties for convergence not possessed 

by other line series): see Onukogu and Chigbu (2002), 

chapter 5, Chigbu and Ugbe (2002) and Chigbu and 

Ukaegbu (2007). 

 

In the area of the optimization of Linear Programming 

Transportation Problems, the following papers exposes 

my contributions: Chigbu and Udoh (2002, 2006) and 

Udoh and Chigbu (2008). 

 

6.2. Postgraduate Supervision and Conference 

       Attendance 
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I have been involved in Postgraduate supervision in 

mainly the broad areas of Design of Experiments and 

General Optimization techniques at M.Sc. level for 

over ten years and Ph.D. level for about five years. To 

date, I have successfully supervised ten M.Sc. projects 

most of which have either been published or are 

publishable and currently supervising seven 

M.Sc. and six Ph.D. students. A Ph.D. thesis I co-

supervised was recently examined successfully. 

 

With regard to subjecting the outcome of my research 

activities to regular scrutiny by professionals and 

colleagues elsewhere in the world, I regularly attend 

and present papers at relevant national and 

international conferences as could be found 

documented on my curriculum vitae. Recently, I 

attended the Royal Statistical Society Conference 

(September 1 – 5, 2008), University of Nottingham, 

U.K. and a picture of mine taken by the organizers 

during my presentation at the conference appeared on 

the cover page of the Royal Statistical Society (RSS) 

News of November 2008 (see Appendix). 

 

6.3. Teaching 

My teaching experience at this University spans over 

twenty-three years excluding the period of my study 

leave in United Kingdom (1992 – 1996) (during which 

I occasionally taught Statistics courses at 

undergraduate level). For the rest of the time, I started 

my teaching career at our University with the teaching 
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of mostly Statistics service courses to Social Sciences, 

Biological Sciences and Engineering students. 

Subsequently, I have over the years taught almost all 

undergraduate Statistics courses at one time or the 

other and Design and Analysis of Experiments at 

postgraduate level in my department. I have also 

supervised many B.Sc. projects in Statistics. 

For a substantial number of years from the late 1990’s, 

I also taught both undergraduate and postgraduate 

Quantitative Economics courses: Mathematical 

Economics, Econometrics, etc, at the department of 

Economics of this University. 

 

7. Desiderata 

Mr. Vice Chancellor Sir, please permit me to digress a 

bit to dwell on a number of things enormously lacking 

but greatly desired in the attainment of fulfilled 

Statistical career especially as we are celebrating my 

inauguration to the Chair of Statistics of this 

University. 

 

7.1. Basics of Statistical Practice and Consulting 

In attempting to elucidate the proper procedures of 

Statistical Practice and Consulting especially for self-

employment, one needs to have an overview of the 

subject matter – DOE vis-àvis the various stages of 

designing efficient experiments. Indeed, there are a 

number of things that should be put into consideration 

but however, often neglected, if a proper statistically 

designed experiment is to be achieved. 
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Every practicing Statistician who designs experiments 

should realize that a good design considers plots and 

treatments first, and then allocates treatments to plots. 

A choice of a design for experimentation should not 

just be made from an already existing list of named 

designs. Emphasis should always be laid on choosing a 

design, which answers the research question under 

consideration instead of just resorting to analysis 

involving a given design purported to be adaptable for 

the research question. 

 

Having declared earlier that the world is just that of the 

Statisticians and the “Scientists”, the first stage of 

designing an efficient experiment involves 

Consultation where both the “Scientist” and the 

Statistician need to collaborate, arrive at a consensus 

well ahead of the time of embarking on the experiment. 

At this stage, the Statistician should have at the back of 

his/her mind that the “Scientist” would hardly present 

his/her problems with the required statistical precision. 

 

However, it is expected that the experience of the 

Statistician count so much here since with careful 

cross-examination and persuasion of the “Scientist” the 

limited knowledge of the “Scientist” on the right way 

forward will be circumvented. 

 

The second stage involves the determination of a 

suitable statistical design for a given problem 
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especially if the “Scientist” comes forth with some 

recommendation of a design from a shortlist of the 

ones he/she knows. 

 

Third stage is about the collection of data where the 

Statistician, in collaboration with the “Scientist”, 

prepares a data-collection format for the collection of 

all relevant information/data as long as it is available 

with no modifications of any sort. 

 

The fourth stage demands that the Statistician 

scrutinizes the data collected by the “Scientist” with 

the view of detecting obvious anomalies and 

malpractices. In this regard, the Statistician needs to 

promptly query dubious data while the 

activities of the “Scientist” are still fresh in his/her 

memory. 

 

The fifth stage is on Analysis proper. Some traditional 

and necessary calculations mapped out at the 

Consultation stage with the data obtained would then 

be made. ANOVA tables, p-values, means and 

standard errors, etc should be computed. However, 

some modification on earlier proposed things to 

calculate could be made in the light of further 

development during experimentation. One way of 

appreciating what one does here is by first of all 

knowing how to calculate things by hand/using pocket 

calculators. A reliable statistical computing package is 

inevitable especially for large data set. 
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The final stage involves Conclusions and 

Interpretation. The presentation of the outcome of 

standard calculations means little or nothing to the 

“Scientists”. However, proper interpretation of the 

results by a skilled Statistician by the use of terms the 

“Scientist” would easily understand would suffice. The 

above procedures were also discussed in Bailey (2008). 

 

7.2.  General Mishandling of Statistical      

data/methods and Panacea 

In Nigeria today, Statistics has not been accepted as a 

professional course as the case in the developed world 

like United Kingdom. As a result of this, few people 

take to studying Statistics at University level. This has 

led to the existence of very few properly skilled 

Statisticians. Currently, in Nigeria, the number of 

Professors of Statistics is not more than twenty-five but 

there exist about forty degree programmes in Statistics 

run by various Universities. The dearth of Professors 

and other cadres of lecturers of Statistics in Nigeria 

have led to the production of a few properly trained 

and qualified Statisticians. Consequently, a lot of 

people without the required statistical skills handle and 

analyze essential statistical data wrongly or even 

secure employment to teach Statistics at the various 

levels of education. Even the basics of appreciating the 

four (nominal, ordinal, interval and ratio) scales of 

measurement of data before analysis are thrown to the 

wind. Once statistical data are handled wrongly 
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without this appreciation, a lot of distorted and 

unreliable analysis, conclusions and interpretation 

occur. Based on the foregoing, it is pertinent to, at this 

juncture, assert as follows. 

(i) There should be no over-ambitiousness in the 

adoption or application of statistical methods 

in analysis and problem solving. It does not 

really matter what statistical method is 

adopted/applied, whether pictorial (using bar 

charts, pie charts, histograms, etc), 

descriptive (using means, variances, etc) or 

even some sophisticated methods of analysis, 

as long as the method used conforms with the 

type of data under consideration. 

 

(ii)    A great proportion of the populace of a nation 

is exposed to high risks or danger when 

wrong decisions arising from wrong 

statistical approaches to problems by 

unskilled Statisticians are made. 

 

Some analogy of the kind of danger involved 

here could be drawn from the danger 

associated with graduating a half-baked, 

unskilled medical doctor who opens a clinic 

in an environment of uninformed citizens, 

who before they know it, people would have 

been dying in droves in his clinic. Well, of 

course, as the news of the casualties spread 

more people would desist from going to the 
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clinic since their lives are in serious danger. 

For an incompetent Statistician, in this 

regard, more people would have been 

“killed” without their knowing it since 

applying statistical methods wrongly would 

lead to a whole lot of wrong decisions and 

planning affecting humanity, for instance, by 

governmental and non-governmental 

organizations which would subsequently lead 

to even higher rate of mortality. 

 

(iii) Younger people who have good quantitative 

aptitude and have shown reasonable interest 

in studying Statistics at tertiary level 

education should be encouraged and 

motivated by their being awarded grants and 

scholarships to undergo their courses by the 

Federal Ministries of National Planning and 

Education and/or their agencies as well as 

multinational organizations. 

 

(iv) The National Bureau of Statistics (NBS) need 

to be properly financed by the Federal 

Government of Nigeria so that it could 

perform its statutory duties which among 

others include reliable surveys and the 

collection of genuine data for analysis and 

planning. Towards the end of last year, it was 

reported in the news media that most of the 

functions of NBS were not to be performed 
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during the last financial year but for the 

financial assistance of some international 

agencies. If so, it is a matter that should be 

seriously looked into by the government. 

 

 

8. Conclusions 

Mr. Vice Chancellor Sir, within the last one hour or 

thereabout, I have made attempts to define and discuss 

Statistics, Combinatorics and semi-Latin squares and 

related “objects”, in all their ramifications. In the 

process of my presentation, I have also highlighted 

issues pertaining to the Statistical and Combinatorial 

design of experiments and especially the aspects of 

Statistics and Combinatorics studies associated with 

research works on the combinatorial “object” known as 

semi-Latin square. Above all, my research 

contributions over the years have been exposed and 

some key issues associated with proper Statistical 

practice and consulting discussed. 

 

At this juncture, I think it is worthwhile to put on 

record that a number of persons and bodies have given 

me various kinds of support in my academic pursuit to 

this level and in making life worth living. However, as 

this afternoon’s assignment of mine is mainly 

academic, my expression of appreciation would mostly 

be in relation to academic issues. 
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In this regard, therefore Mr. Vice Chancellor Sir, I, 

once more, crave your indulgence to thank you again, 

and express my profound gratitude to the following: 

 

• My parents – Peter (Late) and Sussana Chigbu 

for insisting on and providing for my early 

education; 

• Sir Walter Atufunwa for all his advice when I 

first arrived Nsukka for my B.Sc. programme, 

which enabled me settle down to studies fast; 

• Professor I.B. Onukogu, my M.Sc. supervisor 

and mentor at the University of Nigeria, and 

Professor G.E.O. Ogum of Nnamdi Azikiwe 

University, Awka for all his encouragement; 

• Professor O.V. Ekechukwu (now at National 

Universities Commission, Abuja) for his 

wonderful counsel all through my academic 

career from 1984 to this stage, and special 

friendliness and brotherliness; 

• Professor P.I. Uche (my undergraduate 
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