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Abstract. The thermodynamic properties of superconducting Dirac electronic systems is analyzed in the
vicinity of quantum critical point. The system is characterized by a quantum critical point at zero doping,
such that the critical temperature vanishes below some finite value of interaction strength. It is found that
the specific heat jump of the system largely deviates from the conventional BCS theory value in the vicinity
of quantum critical point. We investigated the region of applicability of the mean-field theory using the
Ginzburg-Landau functional.

1 Introduction

A lot of attention has been devoted recently to quasi-two-
dimensional condensed matter systems containing elec-
trons that may be described by a relativistic Dirac –
type Lagrangian, namely Dirac electrons. These are ev-
idently non-relativistic systems, though the kinematics
of such electrons is described by a Dirac instead of a
Schrödinger term in the Hamiltonian [1–3]. This arises
from the fact that in some materials there are special
points in the Brillouin zone where two bands touch in
a single point around which the electron dispersion rela-
tion may be linearized. The Fermi surface reduces to a
point, the Fermi point, where the density of states van-
ishes. The elementary excitations around a Dirac point
are Dirac electrons [4].

There are many important quasi-two-dimensional
Dirac electrons systems. These includes high-Tc

cuprates [5–8], graphene [9–20], and transition metal
dichalcogenides [21–23].

The discovery of the high-Tc superconductors made a
large impact on condensed matter physics, and in such
systems, the superconductivity is considered to occur in
a quasi-two-dimensional system of copper oxide (CuO2)
plane [24]. The Dirac points appear in the intersection
of the nodes of the d-wave superconducting gap and 2D
Fermi surface. The low-energy quasiparticle dynamics is
determined exclusively by these points since they are oc-
cupied even at very low temperatures [1,6–8]. Because of
these nodes, the low-energy quasiparticle spectrum is gap-

a Present address: Department of Physics, University of
Augsburg, 86135 Augsburg, Germany.
e-mail: abahobinna@gmail.com

less and the dispersion relation can be linearized. Thus,
Dirac electrons are expected to play an important role in
the cuprates.

Dirac electrons also appear in semi-metals such as
graphene sheets or stacks, namely graphite, where the van-
ishing density of states at the Fermi points has important
consequences in the electronic properties [9–12,15–20].
Moreover, graphene can display unusual properties as a
part of normal-superconducting hybrid structures, for in-
stance, the Andreev reflection phenomenon.

Thorough investigation of graphite has revealed also
the evidence of intrinsic superconductivity in doped sam-
ples [25]. Theoretically, various mechanisms of super-
conductivity in graphene have been considered. Both
phonon- and plasmon- mediated mechanisms [26] as
well as resonanting valence bond and density wave
lattice models [27,28] have been proposed. Recently,
first principle calculations have predicted that doped
graphane as a high-temperature electron-phonon super-
conductor [29]. It has been shown within the time tested
BCS model that superconducting properties in undoped
graphene [4,19,20,23,30,31] posses a quantum critical
point (QCP), which connect the normal and supercon-
ducting phases. It is controlled by the magnitude of the
effective superconducting interaction strength. However,
the Cooper theorem of pairing is no longer valid as one
expect in the absence of Fermi surface due to doping.

The quasi-two-dimemsional transition-metal dichalco-
genides (TMD) 2H-TaSe2, 2H-TaS2 and 2H-NbS2 are lay-
ered compounds where s-wave superconductivity coex-
ists with a charge-density wave (CDW) [32,33] at low
temperatures and Dirac electrons produces interesting ef-
fects in the system. The Dirac points are formed in the

http://www.epj.org
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intersection of the Fermi surface with the nodal lines of
the charge-density wave order parameter [21–23]. This is
a particular example of nodal liquids, which in general
contain Dirac electrons [34].

Uchoa and co-workers have proposed theory for s-wave
superconductivity in nodal liquids [23]. It was also ob-
served, in contrast to the original BCS theory, which is
not critical, there exist a QCP in the critical coupling pa-
rameter for undoped system. That is, when the system
is doped, the superconducting gap is strongly changed as
the coupling constant parameter is modified and the QCP
is suppressed. The transport and thermodynamic proper-
ties of the nodal liquids deviate from the BCS theory of
conventional superconductors.

For these reasons mentioned above, we are encourage
to believe that Dirac electrons are expected to play an im-
portant role in the understanding of the superconductivity
in various materials. Thus, the superconductivity in two-
dimensional systems is of great relevance in the condensed
matter physics.

Considering a two-dimensional model requires a few
comments concerning the applicability of the mean field
approach. It is well known that the superfluid transi-
tion in a two-dimensional system occurs in the form of
the Berezinskii-Kosterlitz-Thouless transition at a tem-
perature lower than the mean field transition tempera-
ture [4,35,36]. Thus, the transition temperature will give
the temperature scale at which the amplitude of the or-
der parameter becomes non-zero, whereas phase coherence
occurs only at the lower transition temperature. Neverthe-
less, the applicablity of the mean field approach improves
for some material like graphite, where a nonzero interpla-
nar coupling is always present [19,20,27].

Our aim in this paper is to investigate the thermody-
namic properties of the Dirac electrons system in general
form. We employ the Ginzburg Landau functional to es-
tablish the region of applicability of mean field approxi-
mation. This analysis will be perform using the standard
s-wave BCS model for the Dirac electrons without invok-
ing any nature of pairing mechanism (see Refs. [19,20]).

The rest of the paper is organise as follows, in Sec-
tion 2, we use the standard BCS theory in two dimension
to calculate the superconducting energy gap and the crit-
ical temperature as functions of the doping level and the
pairing interaction. Also in that section, we analyse the
behaviour in various coupling limit. Then, Section 3 is de-
voted to the derivation of thermodynamic properties of
the Dirac electrons system. The applicability of the the-
ory is considered within the context of Ginzburg Landau
theory in Section 4. Finally, the Section 5 will be devoted
to the discussion of results and conclusions.

2 BCS gap equation and temperature analysis

In this section, we employ the standard s-wave BCS gap
equation in two-dimension to analyze the behavior of the
system at both zero and finite temperature. The BCS gap
equation in a spatially two dimensional uniform system is

given as [19,20,37]

1 =
1
2

∫
|Vp| d2p

(2π�)2
1

Ep
[1 − 2n(Ep)], (1)

where the energy of excitations is Ep =
√

ξ2
p + Δ2 and

n(Ep) is the equilibrium Fermi distribution of quasipar-
ticles with energies Ep. The energy measured from the
Fermi level, ξp = vF p ± μ, where vF is the Fermi veloc-
ity and μ is the measure of doping. |Vp| determines the
pairing interaction.

Using the standard BCS theory of Dirac spectrum
without including any form of pairing mechanism in other
to be general, we assume an s-wave pairing interaction
Vp = − |Vp| that depends on the range of interaction. The
coupling constant, λ is introduced using the relation:

|Vp|
π�2v2

F

=

{
λ/ξm, |ξp| < ξm,

0, |ξp| > ξm

(2)

where the ξm determines the range of the attractive inter-
action.

2.1 Zero temperature analysis

The zero temperature BCS gap equation for both electron
and hole doping can be obtain as:

ξm

λ
=

1
2

⎡
⎣2

∫ ξm

μ

ξp√
ξ2
p + Δ2

0

dξp + 2μ

∫ μ

0

dξp√
ξ2
p + Δ2

0

⎤
⎦

=
√

ξ2
m + Δ2

0−
√

μ2 + Δ2
0−|μ| log

[
|μ| + √

μ2 + Δ2
0

Δ0

]
.

(3)

At zero temperature limit and when the system is un-
doped, μ = 0, the BCS gap equation yields [19,20],

Δ0 = ξm
λ2 − 1

2λ
. (4)

This shows that the gap equation has a QCP, indicating
that superconductivity can exist only above a minimum
range of coupling interaction. Assuming that λ = 1+ ε, it
can be shown that in the limit of λ → 1 and the ε � 1
that Δ0 = ε ξm. Considering a finite but low doping case
when the gap, Δ0 is very small, equation (3) becomes

Δ0 = 2|μ| exp
(−ξm

|μ|
(1 − λ)

λ
− 1

)
. (5)

This shows that the gap is largely depend on the doping
level, |μ| rather than the range of interaction and assure
that gap exist for any finite doping in the system.



O. Abah and M.N. Kiselev: Thermodynamic properties of the superconductivity in 2D Dirac electronic systems 49

2.2 Finite temperature analysis

Considering both electron and hole doping, the finite
temperature gap equation as a function of interaction
coupling constant and doping parameter can be written
as [19,20,23]:

ξm

λ
= 2 T ln

{
cosh(

√
ξ2
m + Δ2/2 T )

cosh(
√

μ2 + Δ2/2 T )

}

+ |μ|
∫ |μ|

0

dξp√
ξ2
p + Δ2

tanh

⎛
⎝
√

ξ2
p + Δ2

2 T

⎞
⎠ . (6)

For zero doping limit, μ = 0, equation (6) becomes

ξm

λ
= 2T ln

{
cosh(

√
ξ2
m + Δ2/2 T )

cosh(Δ/2 T )

}
. (7)

Using λ ≈ (1 + ε) in the low temperature limit, ξm � Tc,
(T = Tc, Δ → 0) we have,

ξm = ξm + ε ξm − (1 + ε) 2 Tc ln 2. (8)

Employing the relation, Δ = ε ξm, we observe that in the
vicinity of QCP, λ → 1, we have 2 Δ0/Tc = 2.77. Far from
the QCP, in the limit λ � 1, the critical temperature,
Tc = ξm λ/4 and the zero gap dependence on the transi-
tion temperature is obtained as 2 Δ0/Tc = 4. These results
agree with references [19,20,30,31]. We have seen that from
the finite temperature analysis at zero doping, μ = 0; the
BCS universal ratio for normal metal κ0 ∼ 2 Δ0/Tc = 3.52
is not satisfied at vicinity of QCP and strong coupling
limit.

At finite doping, the critical temperature in the weak-
coupling regime is obtain as:

Tc =
2 |μ| eγ

π
exp

(−ξm (1 − λ)
|μ|λ − 1

)
(9)

where eγ = 1.781. Substituting the zero temperature
gap equation of equation (5) into equation (9), we get
2 Δ0/Tc = 3.52. Also, in the strong coupling limit (μ/Δ �
1), equation (6) can be written as:

ξm

λ
= 2 Tc ln

cosh
(

ξm

2 Tc

)

cosh
(

μ
2 Tc

) +
μ2

2 Tc
. (10)

After some expansions; in the limit of λ → 1, that is λ ∼
1 + ε; equation (10) can be simplify into

Tc =
Δ0 +

√
Δ2

0 + μ2 ln 4
2 ln 4

. (11)

This is the expression for the superconducting transition
temperature of the system when doped at strong coupling
limit [23]. It can be observe that when the system is not
doped, μ = 0, we recover the relation 2 Δ0/Tc = 2.77.

Let now consider the behavior of the gap equation near
Tc in the limit of Δ/2T � 1. Considering the case of zero
doping, μ = 0, equation (6) is:

ξm

λ
= 2 T ln

⎧⎨
⎩

cosh
(

ξm

2 T

)

cosh
(

Δ
2 T

)
⎫⎬
⎭ . (12)

After expanding equation (12) and taking the limit λ → 1,
λ ∼ 1 + ε we have

Δ = 2
√

Tc Δ0 τ1/2 (13)

where τ = 1 − T/Tc and Tc = Δ0/2 ln 2. Figure 1 shows
the dependance of the superconducting gap to tempera-
ture when the system is not doped.
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Fig. 1. (Color online) Superconducting gap dependence on
temperature.

When the system is doped, μ �= 0, equation (6) be-
comes;

ξm

λ
= 2 T ln

⎧⎪⎪⎨
⎪⎪⎩

cosh
(

ξm

2 T

)

cosh
(√

μ2+Δ2

2 T

)
⎫⎪⎪⎬
⎪⎪⎭

+
μ2

2 T
. (14)

We performed Taylor’s series expansion in the limit,
Δ/2T � 1, and some algebraic simplifications near phase
transition to obtain

Δ = 2

√
Tc Δ0 +

μ2

4
τ1/2. (15)

Equation (15) yields the behaviour of the gap close to
phase transition when the system is doped and the gap
vanish when the temperature equals the critical temper-
ature (T = Tc). The dependence of the superconducting
gap on doping for various temperature near Tc is shown
in Figure 2. It is observed that the superconducting gap
increases with doping at a finite temperature. Also, the
low gap size corresponds to the temperature close to the
transition temperature, Tc.

3 Thermodynamic properties

We proceed with calcualating the difference between the
thermodynamic potentials for the system in the super-
conducting and normal phases using the standard proce-
dure [38]. The difference in thermodynamic potential is
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Fig. 2. (Color online) The superconducting gap of the Dirac
electronic system as a function of the µ for different T . The
temperature, T = 0.75 Tc (red, dotdashed line), 0.85 Tc (green,
dashed line) and 0.95 Tc (blue, solid line) for the parameter
Tc = 1.

defined as follows;

Ωs − Ωn = V

∫ Δ

0

dΔ Δ2 d(1/λ̃)
dΔ

(16)

where λ̃ = π �
2 v2

F

ξm
λ from equation (2). Expanding equa-

tion (12), the gap equation at low temperature limit for
zero doped system (μ = 0) can be re-written as:

ξm

λ
= 2T

(
ξm

2T
− Δ

2T

)
+ 2T ln

1 + e−ξm/T

2

− 2T ln
1 + e−Δ/T

2
. (17)

Expanding equation (17) in the low temperature limit,
ξm � Δ, we obtain the relation:

Δ = Δ0 − 2 T exp (−Δ/T ). (18)

To obtain the thermodynamic potential, we start by differ-
entiating equation (17) with respect to Δ and incoporating
λ̃ to obtain (we have assume � = 1);

d

dΔ

(
1
λ̃

)
= − 1

π v2
F

tanh
(

Δ

2 T

)
. (19)

At low temperature limit, where Δ/T � 1, we approxi-
mate tanh (Δ/2 T ) by 1−2 exp (−Δ/T ). Applying the re-
sult in equation (16) and substituting equation (18) into
the resultant equation, we get

Ωs − Ωn =
1

πv2
F

[
− Δ3

0

3

− 4T 2Δ0e
(−Δ0

T ) − 4T 3e(−Δ0
T ) + 4T 3

]
. (20)

In the present low temperature limit, the normal phase
thermodynamic potential is given by Ωn = −4 T 3/π v2

F .
Then, the entropy of the system, Sn,v = −∂Ωn/∂T =
12 T 2/π v2

F and the specific heat capacity can be written
Cn,v = 24 T 2/π v2

F .

These results should be contrasted with the conven-
tional behaviour of thermodynamic potential for normal
metal describe by Landau Fermi liquid theory. In that
case, Ωn ∼ −T 2 and therefore both entropy and spe-
cific heat are linear in temperature. In the case of Dirac
fermions, the density of state is not a constant but de-
pends linear in energy. The energy is counted from nodal
point. This feature of the density of state therefore lead
to quadratic behaviour of both entropy and specific heat
of Dirac fermions at zero doping. We point out that for
finite doping, the Fermi surface is a circle (for zero dop-
ing, it is just a point). The density of state at the Fermi
level is a constant for the doped case. Therefore, the spe-
cific heat and entropy will be described by conventional
Landau Fermi liquid formulas for normal metal.

Thermodynamic potential for the superconducting
material becomes

Ωs =
1

πv2
F

{
−Δ3

0

3
− 4 T 2 Δ0e

(−Δ0/T ) − 4 T 3e(−Δ0/T )

}
.

(21)
Thus, the electronic specific heat of the superconducting
state of the system is:

Cs,v = T
∂S

∂T
=

4 Δ3
0

π v2
F T

exp (−Δ0/T ). (22)

To consider the jump in specific heat capacity of Dirac
electrons systems, we start with the gap equation for un-
doped case in the limit μ/Tc � 1 near phase transition
(Eq. (12)) and take care of the proper density of state.
The thermodynamic potential difference becomes;

Ωs − Ωn = −2 Tc Δ2
0

π v2
F

τ2 (1 + τ)

= −2 Tc Δ2
0

π v2
F

(
1 − T

Tc

)2

. (23)

After algebraic simplification, the jump in specific heat
capacity at Tc is

ΔC|Tc =
4 Δ2

0

π v2
F

. (24)

This is one of the result we are after. It can also be ob-
served that the jump in specific heat does not depend
linearly on Tc as the standard BCS theory of conventional
superconductors. Using the relation Ωn = −4 T 3/π v2

F and
Δ0 = 2 Tc ln 2, we have

[
Cs − Cn

Cn

]
Tc

= 0.32. (25)

We observed that the universal constant in the vicinity of
QCP is 0.32 . This strong decrease from the BCS universal
constant value of 1.43 for conventional superconductor is
attributed to the vanishing density of states at the Fermi
point. We note that Uchoa et al. [23] obtained the value
of 0.35 using different approach.
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4 Ginzburg Landau functional

In this section, we use the superconducting gap depen-
dence near phase transition and the jump in specific heat
capacity to recover the coffiecients of the Ginzburg Landau
functional when the system is not doped. The fluctuation
correction to the specific heat capacity is used to estab-
lish the limit of the applicability of the Ginzburg Landau
theory. In the zero magnetic field, the Hamiltonian of the
system close to superconducting transition related to the
presence of the fluctuation Cooper pairs in it can be writ-
ten as:

F [Ψ(r)] =
∫

dV

{
a|Ψ(r)|2 +

b

2
|Ψ(r)|4 + c|∇Ψ(r)|2

}

(26)
where Ψ is the order parameter, a, and b are the coeffi-
cients that depends on temperature. The order parameter
coincides with the value of the superconducting gap in
spectrum of one-particle excitations and can be denoted
as Δ(r).

From the Landau theory of phase transitions, the su-
perconducting gap, Δ is related to the coefficients and
temperature as follow:

|Δ|2 = −a

b
(27)

where a = α |τ | and |τ | = T−Tc

Tc
. Also, the jump of the

specific heat capacity at the phase transition point can be
written as [39,40], ΔC = Cs − Cn = α2/2 b Tc.

Employing equation (13), the superconducting gap
equation near phase transition at zero doping, into equa-
tion (27) we get b = α/4 Δ0 Tc. Using the relation,
ΔC = 4 Δ2

0/π v2
F we have, α = 4 Tc ln 2/π v2

F . Then, the
coeffiecients a, b, and c becomes

a =
4 Tc ln 2

π v2
F

(
1 − T

Tc

)
; b =

1
2 π v2

F Tc
, and c =

1
ξm

.

(28)
Now, let consider the contribution of fluctuation to the
heat capacity in the normal phase of the Dirac electrons
system. Restricting ourselves to the region of tempera-
tures beyond the immediate vicinity of transition, where
this correction is still small, the fourth-order term in Ψ(r)
can be omit with respect to the quadratic one [39].

However, for the Dirac electrons system which is basi-
cally 2D systems, the fluctuation correction to the specific
heat capacity turns out to be [40]

δCfl =
1
4π

α Tc

c τ
. (29)

This correction allows us to answer quantitatively about
the limits of applicability of the GL theory. In the vicinity
of the transition point, this theory can be applied up to
the temperature when the fluctuation corrections become
comparable to the value of the corresponding physical val-
ues themselves. The relationship between the fluctuation
correction and the change in specific heat is of the form,
δCfl � ΔC;

b Tc

2π c α
� τ (30)

where Ḡi = b Tc/2 π c α. Ḡi is the so-called Ginzburg-
Levanyuk number , which is defined as the value of the
reduced temperature at which the fluctuation correction
reaches the value of the difference in specific heat capac-
ity, ΔC. The mean field approximation is applicable in the
region Ḡi � τ [40].

Considering undoped Dirac electronic system in strong
coupling limit (μ/Tc � 1), we substitute the parameters
b, c, and α into equation (30) to obtain

Ḡi(μ = 0) =
1

16 π ln 2
ξm

Tc
. (31)

Using the relations at zero temperature analysis, we get

Ḡi(μ = 0) =
λ

4 π (λ2 − 1)
. (32)

Equation (32) can be used to obtain the range of appli-
cability of the theory in the strong coupling limit. The
theory fails in the vicinity of QCP (λ → 1).

When the system is doped, it takes the Fermi surface
to becomes that of a normal two dimensional system and
the Ginzburg number, Ḡi can be written as

Ḡi(μ �= 0) =
Tc

μ
. (33)

Subsitituting the value of Tc in the weak coupling limit
(Eq. (9)) into equation (33), we have

Ḡi(μ �= 0) =
2 eγ

π
exp

(−ξm(1 − λ)
|μ|λ − 1

)
. (34)

Using equations (32) and (34), the regions where the the-
ory is applicable in a 2D Dirac electronic system is estab-
lished.

5 Conclusions

We have theoretically studied the thermodynamic prop-
erties of superconducting Dirac electrons systems and re-
examined the superconducting gap at both zero and finite
temperatures without invoking any form of pairing mech-
anism and assuming a standard s-wave.

The thermodynamic properties of the Dirac electrons
systems is different from the conventional superconduc-
tors. For instance, the specific heat jump of the system is
obtained as 0.32 (ΔCv/Cn = 0.32) in the vicinity of QCP.
This is a strong deviation from the BCS universal constant
value of 1.43 for conventional superconductor because of
the vanishing density of states at the Fermi point. We
used the Ginzburg Landau functional parameters which
depends on the system of material to analyze the range of
applicability of the mean field theory. It is observed that
close to the QCP, the theory of superconductivity is not
applicable. But different phases BCS and non-BCS exist,
which depends on coupling constant, λ, the range of at-
tractive interaction, ξm and the level of doping, μ.
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Finally, we have presented both qualitative and quan-
titative description of thermodynamic properties of 2D
Dirac electrons system in the vicinity of QCP and estab-
lished the domain of applicability of the mean-field the-
ory. We presented Ginzburg Landau treatment of fluctu-
ations. The work on time-dependent Ginzburg Landau is
in progress.
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