JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 227, 319—334 (1998)
ARTICLE NO. AY986075

Stability of the Mann and Ishikawa Iteration

Procedures for ¢-Strong Pseudocontractions

and Nonlinear Equations of the ¢-Strongly
Accretive Type

M. O. Osilike*

Department of Mathematics, University of Nigeria, Nsukka, Nigeria
Submitted by William Art Kirk

Received September 15, 1997

We study the stability of the Mann and Ishikawa iteration procedures for the
class of Lipschitz ¢-strongly pseudocontractive maps in arbitrary real Banach
spaces. As a consequence we study the stability of these iteration procedures for
the iterative approximation of solutions of nonlinear equations of the ¢-strongly
accretive type. Furthermore, we prove that the 7-stability of the Mann iteration
procedure leads to the strong convergence (to the fixed point of T') of the so-called
Mann iteration method with errors introduced by Liu [J. Math. Anal. Appl. 194
(1995), 114-125]. © 1998 Academic Press

1. INTRODUCTION

Suppose E is a real Banach space and T is a self-map of E. Suppose
x, € E and x,,, = f(T, x,) defines an iteration procedure which yields a
sequence of points {x,}’_, in E. For example, the function iteration
X, =f(T,x,)=Tx, Suppose F(T)={xeE: Tx =x}# J and that
{x,} converges strongly to x* € F(T). Suppose {y,):_, is a sequence in E
and {e,f;_, is a sequence in N* = [0,) given by €, = Ily,., — f(T, y)Il. If
lim,_ e, = 0 implies that lim,_, .y, = x*, then the iteration procedure
defined by x,,, = f(T, x,) is said to be T-stable or stable with respect to T
(see, for example, [10-12, 17, 18, 2022, 24-26])).

We say that the iteration procedure {x,} is almost T stable or almost
stable with respect to T if ¥ _ €, < o implies that lim y, = x*. Clearly an
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iteration procedure {x,} which is T-stable is almost T-stable. We shall
show later in this paper that an iteration procedure which is almost
T-stable may fail to be T-stable. We shall also present an example where
some iteration procedures are neither T-stable nor almost T-stable.
Stability results for several iteration procedures for certain classes of
nonlinear mappings have been established in recent papers by several
authors (see, for example, [10-12, 17, 18, 20-22, 24-26]. Harder and Hicks
[12] showed how such sequences {y,} could arise in practice and demon-
strated the importance of investigating the stability of various iteration
procedures for various classes of nonlinear mappings. As was remarked by
Massa (Math. Reviews 90a (1990), no. 54109a, 54H25), the discussion
about stability is very rich in examples. In [10] some applications of
stability results to first order differential equations are discussed.
Recently, the author [19, 22] studied the stability of certain Mann [16]
and Ishikawa [13] iteration procedures for fixed points of Lipschitz strong
pseudocontractions, and solutions of nonlinear accretive operator equations.
Let J denote the normalized duality mapping from E into 2" given by

J(x) = {f € EX: e, £ = IxIP = IF20),

where E* denotes the dual space of E and ( -, - ) denotes the generalized
duality pairing. It is well known that if E* is strictly convex, then J is
single-valued. In the sequel we shall denote the single-valued normalized
duality mapping by j.

An operator T with domain D(T) and range R(T) in E is called a
strong pseudocontraction if for all x,y € D(T) there exist j(x —y) € J(x
—y)and ¢ > 1 such that

1
(Tx — Ty, j(x —y)) < 7||X—}’||2- (1)

Tis called ¢-strongly pseudocontractive (see, for example, [19] if for all
x,y € D(T) there exist j(x —y) € J(x —y) and a strictly increasing func-
tion ¢: [0,%) — [0, %) with ¢(0) = 0 such that

(Tx = Ty, j(x —y)) <lx =ylI> = &(|x = ylDllx = yll. (2)

It is shown in [19] that the class of strongly pseudocontractive operators is
a proper subset of the class of ¢-strongly pseudocontractive operators. The
class of strong pseudocontractions and the class of ¢-strong pseudocon-
tractions have been studied extensively by several authors (see, for exam-
ple, [1-9, 15, 19, 20, 22, 23, 28)). Interest in strong pseudocontractions and
¢-strong pseudocontractions stems mainly from their firm connection with
the important classes of strongly accretive operators and ¢-strongly accretive
operators, respectively.
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An operator T is called strongly accretive if for all x,y € D(T) there
exist j(x —y) € J(x —y) and a constant k > 0 such that

(Tx = Ty, j(x = y)) = kllx = ylI*. (3)

T is called ¢-strongly accretive if for all x, y € D(T) there exist j(x —y) €
J(x — y) and a strictly increasing function ¢: [0, ) — [0, ) with ¢(0) =0
such that

(Tx = Ty, j(x,y)) = $(llx — ylh)llx =yl (4)

If I denotes the identity operator, then it follows from inequalities (1)-(4)
that T is strongly pseudocontractive (respectively, ¢-strongly pseudocon-
tractive) if and only if (I — T') is strongly accretive (respectively, ¢-strongly
accretive). Thus the mapping theory for strongly accretive operators (re-
spectively, ¢-strongly accretive operators) is closely related to the fixed
point theory for strongly pseudocontractive operators (respectively, ¢-
strongly pseudocontractive operators). Recent interest in mapping theory
for strongly accretive operators and ¢-strongly accretive operators, partic-
ularly as it relates to the existence theorems for nonlinear ordinary and
partial differential equations, has prompted a corresponding interest in
fixed-point theory for strong pseudocontractions and ¢-strong pseudocon-
tractions (see, for example, [1-9, 14, 15, 19, 20, 22, 23, 28]).

It is well known (see, for example, [15]) that if T: E — E is continuous
and strongly pseudocontractive, then T has a unique fixed point. Further-
more, if T: E — E is continuous and strongly accretive, then T is
surjective, so that for a given f € E, the equation

Ix=f (5)

has a unique solution.

In [21] the author proved that certain Mann and Ishikawa iteration
procedures are stable with respect to Lipschitz strong pseudocontractions
in real g-uniformly smooth Banach spaces. As a consequence of our results
we proved that certain Mann and Ishikawa iteration procedures for ap-
proximating the solution of (5) (when it exists) are stable in real g-uni-
formly smooth Banach spaces. In [22] we extended the results of [21] to
arbitrary real Banach spaces.

It is our purpose in this paper to examine the stability of the Mann and
Ishikawa iteration procedures for the more general class of Lipschitz
¢-strong pseudocontractions in arbitrary real Banach spaces. As a conse-
guence, we examine, in arbitrary real Banach spaces, the stability of
certain Mann and Ishikawa iteration methods for the iterative approxima-
tion of the solution of (5) (when it exists) when T is a Lipschitz ¢-strongly
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accretive operator. Furthermore, we prove that the T-stability or the
almost T-stability of the Mann iteration procedure leads to the strong
convergence of the so-called Mann iteration method with errors introduced
in [15] to the fixed point of T.

We shall need the following:

LEmMMA TX [27, p. 303]. Suppose that {a,},_, and {b,),_, are two
sequences of nonnegative numbers satisfying the inequality

a,.,<a,+b,, n=0.

If X0 _ob, <o, then lim,_ .a, exists.

2. MAIN RESULTS
For the rest of this paper L will denote the Lipschitz constant of 7' and
L, =1+ L. We now prove the following:

THEOREM 1. Suppose E is an arbitrary real Banach space and T: E — E
is a Lipschitz ¢-strongly pseudocontractive operator. Suppose F(T) # & and
{a,);_o and { B}, _, are real sequences satisfying the conditions

(i 0<e,B,<1n=>0,
(i) X, _pa, =
(i) Xo_pa, B, <,
(v) Io_jaf <o
Suppose {x,)._, is the sequence generated from an arbitrary x, € E by
Zy = (1 - Bn)xn + BnTxn! n = 0'
Xpe1= (1 —a)x, + a,Tz,, n = 0.

Suppose {y,}:_, is a sequence in E and define {€,},_, € N* by

S, = (1= B)yu+ BTy, n=0,
& =lyse1— A=)y, —aTs,], n=0.
Then:
1. The sequence {x,} converges strongly to the fixed point x* of T.
2. My —x* < [1 = a,r(p,, x*)]lly, — x*I
+[ L3+ 4L% + 3(1 + L)] e?lly, — x*|l

+L(1+L)a, Blly, —x*Il + ¢, (6)
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where p, = (1 — «,)y, + ,Ts,, and

ol p, —x*1)
1+ ol py =) +lp, —x*
3. Xr_o€, < cimplies lim, .y, =x*, so that {x,} is almost T-stable.
4. lim

r(pn,x*) =

nowyy =X* implies lim, _, €, = 0.

n—wrn

Proof. 1t follows from inequality (2) that if T has a fixed point, then
the fixed point is unique. Let x* denote the fixed point.

Item 1 is a consequence of Theorem 2 of [23].

We now prove 2—-4. Observe that inequality (2) implies that

((I=T)x = (I=T)y, j(x—y)
d(llx =yl x =yl

d(llx =yl
T 14+ o(llx —yll) +llx =yl

2

lx = ylI> = r(x, y)llx —ylI>, (7)
where

R T E et )
’ 1+ o(lx=yl) +lx—yll
It follows from (7) that
((I=T)x —r(x,y)x = ((I=T)y —r(x,y)y),j(x —y)) =0,
so that it follows from Lemma 1.1 of Kato [14] that
lx =yl <[x =y + A[(J = T)x = r(x,y)x = (I = T)y = r(x, y)0)]|
(8)

€[0,1) Vx,y €E.

for all x,y € E and for all A > 0. Observe that
191 = XN <[ Ypir — (L= @)y, — &,Ts,]
FI = @) (3 —x) + au(T5, — ) |
= & +[(1 = @) (3, —x%) + a(Ts, —x%)|.  (9)
Set p, = (1 — a,)y, + «,Ts,. Then
Yo =Pu T @y, — 15,
= +a)p, +o,[(I=T)p, —r(p, x*)p,]
(L =r(ps x*)) ey,
+(2 = r(py x*)) e (v, = Ts,) + a,(Tp, — Ts,).
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Observe that

x* = (14 a,)x* + a,[(I — T)x* —r(p,, x*)x*]

(1= (P x)) ",
so that

n

Yo —x*=(1+a,)|p, —x*+ [(I=T)p, —r(p,.x*)p,

1+ a,
—((I = T)x* = r(p,, x*)x*)]

(L =r(p,x"))a,(y, —x*) + (2 =r(p,, x*))
X al(y, = Ts,) + a,(Tp, — Ts,).

Thus

n

1+«

n

(=1 sy

(1 =r(p, x*))a,ly, —x*I = (2 = r(p,, x*))
X allly, — Ts,ll — a,lTp, — Ts,|
> (1+ a)llp, — ¥ = (1 = r(p ¥))ally, —x*|
—(2-r(p,, x*))a,flly,, - Ts, |l — o, Tp, — Ts,ll
(using (8)).

Iy, —x*I> (1 + a,)||p, — x* + [(I=T)p, —r(p,. x*)p,

Hence

1+ -r(p, x*))a,
IIpn—x*Ils[ ( ) ]Ilyn—x*ll
1+ «q,

+(2 = r(p,, x*))ellly, — Ts,|l + a,llTp, — Ts,ll. (10)
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Furthermore, we have the estimates
s, = x* I =(L = B (v, = x*) + B (Ty, —x*)|
<[1-=8, + LBy, —x*lI < (1 +L)lly, —x*I. (11)
ly, — Ts Il <lly, —x*Il + Llls, — x*Il < [1 + L(1 + L)]lly, — x*,
I7p, — Ts, |l < Llip, — s,
= L|[(1 = a,) (¥, = 5,) + a,(Ts, = 5,) |
<L(1-a,)Bly, — Tyl + a,L(1+ L)lls, —x*|
<[L@+1L)B, + o, L1 + L) ]lly, —x*I. (12)
Using (11) and (12) in (10) we obtain

[1 +(1- r(pn,x*))an]

— x|+ (2 = r(p,, x*
T+ o ly, —x*Il + (2 = r(p,, x*))

lp, —x*Il <

X a?(1+ L(1+ L))y, — x*Il
+ a,[L(1 + L) B, + a,L(1 + L)*|lly, — x*|

[1 +(1- r(pn,x*))an]

IS
1+, % x|

1y,

+ @2[2(1 + L(1 + L)) + L(L + L)]lly, — x*l
+a, B,L(1 + L)lly, —x*|

[L+ (L= r(pux*))a,][L = a, + a7]ly, — ¥l
+[L3 + 4L% + 3L + 2]a?lly, — x*|I

+ a, B,L(1+ L)y, —x*l

IA

< [1 = a,r(py ) + af]lly, — ¥
+[L® + 4L + 3L + 2]a?lly, — x*|
+ a, B, L(1 + L)y, —x*|
= [1 = a,r(p,, x*)]lly, — x*I
+[ L3+ 4L2 + 3(1 + L)] elly, — x*|l
+ a, B,L(1 + L)lly, — x*|. (13)
Using (13) in (9) now yields (6), completing the proof of 2.
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Next we prove 3. Suppose X% _,€, < %. Then (6) implies that
”ynJrl_x}k”S [1+ 6n]||yn —X*”+ € (14)
where §, = (L® + 4L + 3L + 3)a? + a, B,L(1 + L).Since 7_ 8, < e,

n=0%n

inequality (14) implies that {lly, — x*|l};_, is bounded. Suppose ||y, — x*||
< D Vn = 0. Then (14) implies that

Iy, 1 —x*I <y, —x*Il + D§, + €, = Ily, —x*I + g,

where g, = D§, + €,, and it follows from Lemma TX that lim,_ _lly, —
x*|| exists.

Suppose lim, _ _lly, —x*|| = 8 > 0. We prove that § = 0. Assume, for
contradiction, that & > 0. Since ||Ts, — x*|| < L(1 + Dlly, — x*Il < L1
+ L)D and lim, ., = 0, it follows that lim, _, . «,|ITs, — x*|| = 0. Fur-

thermore, it follows from the inequality
(1= a,)lly, = x*II = a,lITs, — x*|l
<llp, —x*I < (1 = a,)lly, —x*I| + a,lITs, — x*|l

that lim, __llp, — x*|l = & > 0. Hence there exists a nonnegative integer
N such that

1) 1)
||Pn—x*||25, ||yn—x*||2§ Vn > N.
Since
lp, —x*I < (1 - a,)lly, —x*I + a,L(1 + L)y, — x*Il
<[1+LQ+L)]D=M,
then
é(Ilp, — x*1l) $(5/2)
r(p,, x*) = ” i
1+ ¢(lp, —x*) +llp, —x*I ~ 1+ d(M)+M
Yn > N,
so that (6) implies that
$(8/2)a,
ly,,, —x*l< |1 —x*|

T T M)+ m |
+[L® +4L% + 3L + 3]a?lly, — x*|
+ a, B,L(1 + L)lly, —x*|l + ¢, (Vn>=N)

iy S/ Da,
=W =X 1+ ¢(M) + M

+[L® + 4L% + 3L + 3]Da?
+ a,B,L(1+L)D + ¢, (Vn=N).
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Thus

$(8/2)(8/2)a,
1+¢(M)+M

<y, —x*Il=lly,., —x*Il + p, Vn > N, (15)

where p, = [L? + 4L? + 3L + 3]Da? + a, B,L(1 + L)D + ,. It follows
from (15) that

6(6/2)8/2 o
1+ (M) _|_Mj:ZNUZj <llyy —x*Il + j:Zpr' (16)

Since ¥ _, p, < %, inequality (16) implies that X7 _, «, < o, contradicting
condition (ii). Hence & = 0, completing the proof of 3.
We now prove 4. Suppose lim,, _, ..y, = x*. Then

€& = Yur1 = (1= @)y, — T,
<Myuer =21 +[(1 = @) 9y —x*) + a,(Ts, —x*)|
<ly,s1 —x*l+[L+ L1+ L)]lly, —x* >0 asn — o,
completing the proof of Theorem 1. |
If we set B, = 0 Vn > 0 in Theorem 1 we obtain the following:

CoROLLARY 1. Suppose E, T, and F(T) are as in Theorem 1 and {a,} is
a real sequence satisfying the conditions:

(i 0<e, <1,
i) T_,a, ==,
(i) Xo_jaf <o
Suppose {x,} is the sequence generated from an arbitrary x, € E by
Xpo1 = (1 —a)x, + o,TIx,, n>=0.

Suppose {y,} is a sequence in E and define {€,} € N* by

En=||yn+l_(1_an)yn_anTyn”, n > 0.
Then:

1. The sequence {x,} converges strongly to the fixed point x* of T.
2.y, = x*Il < [1 = a,r(p,, x)ly, —x*I + [L® + 412 + 31 +
Dleflly, — x*Il + €,, where p, = (1 — a,)y, + «,Ty, and
B o(llp, —x*))
1+ ¢(lp, —x*l) +llp, —x*II

7(Pnr X*)
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3. Xo_,€, < implies that lim,_ .y, =x*, so that {x,} is almost
T-stable.

4. lim, .y, =x*

implies lim e, = 0.

n—>wrn

Remark 1. For T: E — E a Lipschitz ¢-strongly pseudocontractive
map with F(T) #+ &, Theorem 1 and Corollary 1 show that the Ishikawa
and the Mann iteration procedures considered in the Theorem 1 and the
Corollary 1, respectively, are almost T-stable. The following example shows
that the iteration procedures are not 7-stable.

ExampLE 1. Let N denote the reals with the usual norm. Define T
N — R by Tx = x/2. Then it follows from Theorem 1 that the sequence
{x,} generated from an arbitrary x, € R by

Z, = (1 - Bn)xn + BnTxn, n > 0,

Xpe1= (1 —a)x, + a,Tz,, n =0,

converges strongly to the fixed point of 7 and is almost 7T-stable.

We now show that it is not 7-stable.
Let {y,} €M begiven by y, =n/(1 + n), n > 0. Then

€, =|yn+1 - (1 - an)yn - anT((l - :Bn)yn + BnTyn)|

n+1 n n (2n—an)}

- + a,
n+2 n+1

n+1  4(n+1)

1 (2n +npg,)
= + «
(n+2)(n+1) " 4(n +1)
1 3na, 1 3a,

St tl) dn+l) S (nt2)(n+1) 4

Hence lim, _, e, = 0. However, limy, = 1 # 0 = lim,_,.x, = the unique
fixed point of 7. Observe that

1 a,(2n +np,) a,(2n +np,) na,
= > >
T (n+2)(n+ 1) An+1) - 4n+1) ~2n+1)
an
> — VYn >1,
4

so that 25 _ €, = .
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Remark 2. An operator T with domain D(T) and range R(T) in E is
called ¢-hemicontractive (see, for example, [19]) if F(T) = {x € D(T):
Tx = x} # Jand for all x € D(T) and x* € F(T) there exist j(x — x*) €
J(x — x™) and a strictly increasing function ¢: [0, ») — [0, ) with ¢(0) = 0
such that

(Tx —x*, j(x —x*)) <llx —x*II” = ¢(llx — x*)lx — x*|I.

The example in [3] shows that the class of ¢-strongly pseudocontractive
operators with nonempty fixed point sets is a proper subset of the class of
¢-hemicontractive operators. It is easy to see that Theorem 1, Corollary 1,
and Remark 1 easily extend to the class of ¢-hemicontractive operators.

THEOREM 2. Suppose E is an arbitrary real Banach space and T: E — E
is a Lipschitz ¢-strongly accretive operator. Suppose the equation Tx = f has a
solution for a given f € E. Define S: E — E by Sx = f + x — Tx. Suppose
{a,} and { B,} are as in Theorem 1 and suppose {x,} is the sequence generated
from an arbitrary x, € E by

Zy = (1 - Bn)xn + anxn’ n = 0!
Xpe1= (1 —a)x, + ,5z,, n = 0.

Suppose {y,} is a sequence in E and define {€,} € R* by

wnz(l_Bn)yn+BnSynv nZO,
€n =||yn+1—(1—an)yn —anSwn”, n>0.
Then

1. The sequence {x,} converges strongly to the solution x* of the
equation Tx = f.

2. Myuer —x*I < [ = ayr(py, ) ]lly, —x*I]
+[ L3 + 4% +3(1 + Ly)]ally, — x*Il
+a,B,Li(1+ Ly)lly, —x* + ¢,
where p, = (1 — a,)y, + o,Tw, and

_ o(llp, — x*1l)
1+ ¢(llp, —x*Il) +1lp, —x*II

r(Pur x*)

3. Xn_,€, < implies that limy, =x*, so that {x,} is almost S-
stable.

4. limy, = x* implies that lim €, = 0.
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Proof. It follows from inequality (4) that if Tx = f has a solution, then
the solution is unique. Let x* denote the solution. Then x* is a fixed
point of S and S is Lipschitz with constant L, = 1 + L. Furthermore, for
all x,y € E, there exists j(x —y) € J(x — y) such that

(Sx =Sy, j(x —y) <lx = ylI* = ¢(lx = ylhllx = yll,

so that S is ¢-strongly pseudocontractive. The proof of 1 is just as given in
Theorem 1 of [23] and the proofs of 2—-4 are now essentially the same as
the proofs of 2—4 in Theorem 1 and are therefore omitted.

COROLLARY 2. Suppose E, T, f, and S are as in Theorem 2 and Tx = f
has a solution. Let {«,} be as in Corollary 1. Suppose {x,} is the sequence

generated from an arbitrary x, € E by
Xpi1 = (1 —a,)x, + a,5,, n > 0.

Suppose {y,}is a sequence in E and define {€,} € R* by

& =1 — (L - a)y, —a,Sy[ n=0
Then:

1. The sequence {x,} converges strongly to the solution x* of the
equation Tx = f.

2. 1Ye1 — 2 < [1 = a,r(p,, x*)]lly, — x*]
+[ L3 +4L% +3(1+Ly,)]
X a2y, —x*|| + e,
where p, = (1 — «,)y, + a, Ty, and

O(llp, — x*1I)
1+ ¢(llp, —x*Il) +1lp, —x*II

r(py, x*) =

3. X, _,€, < implies that limy, =x*, so that {x,} is almost S-
stable.

4. limy, = x* implies that lim €, = 0.

Remark 3. For T: E — E a Lipschitz ¢-strongly accretive operator, if
Tx = f has a solution, Theorem 2 and Corollary 2 show that the Ishikawa-
type and the Mann-type iteration methods given in Theorem 2 and
Corollary 2, respectively, are almost stable with respect to S where Sx = f +
x — Tx and the fixed point of § is the unique solution of the equation
Tx = f. The following example shows that the iteration methods are not
stable with respect to S.
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ExAmMPLE 2. Let 9 and T be as in Example 1. Then the equation
Tx = f has a unique solution for any given f < N. Define S: % — N by
Sx=f+x—Tx=f+x/2, and let {x,} be the sequence generated from
an arbitrary x, € R by

Zn = (1 - Bn)xn + anxn’ n = 0!
Xpe1= (1 —a)x, + ,5z,, n = 0.
Then it follows from Theorem 2 that {x,} converges strongly to the unique
solution of the equation Tx = f, and it is almost S-stable.
We now prove that it is not S-stable. For f = 0, the proof follows exactly

as in Example 1 with y, = n(n + 1). If f #+ 0, we may take y, = 1/(n + 1),
n > 0. Then

€& =[Vii1 — (1= @)y, — &, S((1 = B)y, + B,
B -1 N 1L, B BS
ey T2ty Tamny 2 Y
1 1
< +
(n+2)(n+1) n+1

B,

+an(1+ [fl >0 asn — .

However, limy, = 0 # 2f = lim x, = the unique solution of the equation
Tx = f.

Remark 4. The Mann and Ishikawa iteration methods in Theorem 1
and Corollary 1 are shown to be almost T-stable where T is a Lipschitz
¢-strongly pseudocontractive map. Furthermore, the Mann-type and the
Ishikawa-type iteration methods in Theorem 2 and Corollary 2 are shown
to be almost S-stable where T is a Lipschitz ¢-strongly accretive operator,
Sx = f + x — Tx, and the unique fixed point of § is the unique solution of
the equation Tx = f.

Examples 1 and 2 show that the iteration methods in Theorem 1 and
Corollary 1 are not T-stable and that the iteration methods in Theorem 2
and Corollary 2 are not S-stable. It is certainly of interest to obtain
Mann-type and Ishikawa-type iteration methods which are stable with
respect to Lipschitz ¢-strong pseudocontractions. Furthermore, it is of
interest to obtain stable Mann-type and Ishikawa-type iteration methods
for the iterative approximation of the solution (when it exists) of the
equation 7x = f when T is a Lipschitz ¢-strongly accretive operator.

THEOREM 3. Suppose E is a real Banach space and T: E — E is a
Lipschitz ¢-strongly pseudocontractive operator. Suppose F(T) + Jand {a,}
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and { B,} are as in Theorem 1. Suppose {u,};_, is any summable sequence in
E (i.e., T _ollu,ll < ). Then the sequence {y,} generated from any y, € E by

Yn+1 = (1 - a)Yn + anT((l - Bn)yn + BnTyn) +u,, n>0, (17)

converges strongly to the fixed point of T.
Proof. Let x* denote the fixed point of 7. From (17) we obtain

el =1y = (1 = @)y, = @, T((1 = B)y, + BTy
Since X7 _ollu, |l < o, it follows from Theorem 1 that lim y, = x*.

Remark 5. If B, =0Vn >0 in Theorem 3, {y,} reduces to the Mann
iteration method with errors introduced in [15]. Thus, the almost T-stabil-
ity of the Mann iteration method in Corollary 1 implies the strong
convergence of the Mann iteration method with errors to the fixed point of
T. Furthermore, it is clear from Theorem 3 and Example 1 that the strong
convergence of the Mann iteration method with errors to the fixed point of
T does not imply the T-stability of the original Mann iteration method. It
is therefore more interesting to study the stability of the original Mann
and Ishikawa iteration methods rather than studying these iteration meth-
ods with errors which appear to have questionable usefulness. The intro-
duction of the error terms seems unmotivated, because under the hypothe-
ses usually imposed on the error terms, all computations follow exactly as
in the case of iteration methods without errors to yield results already
known for the original iteration methods. There are no known examples
where the original Mann and Ishikawa iteration methods behave differ-
ently from the Mann and Ishikawa iteration methods with errors. It
appears the error terms only unnecessarily complicate the iteration
schemes.

THEOREM 4. Suppose E, T, S, {w,}, and {B,} are as in Theorem 2.
Suppose the equation Tx = f has a solution, and {u,} is a summable sequence
in E. Then the sequence {y,} generated from an arbitrary y, € E by

Yn+1 = (1 - an)yn + anS((l - Bn)yn + BnSyn) + Uy, n= O' (18)

converges strongly to the solution of the equation Tx = f.

Proof. Let x* denote the solution of the equation Tx = f. From (18)
we obtain

gl = yuey = (1 = )y, — @, S((1 = By, + By,

and since X, _ollu, |l < o, it follows from Theorem 2 that lim y, = x™*.
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Finally we present an example where the Mann and Ishikawa iteration
methods are neither T-stable nor almost T-stable.

ExAmMPLE 3 [11, p. 687]. Let 9N denote the reals with the usual norm.
Let 7: ;R — N be the identity mapping on N. Let {«,} and { B,} be any
sequences in [0, 1] and let {x,} be the sequence generated from x, € N,
X, # 0 by

z,=(1-B,)x, + B,Ix,, n >0,
Xpo1= 1 —a)x, + Tz, > 0.
Clearly x, € F(T) and {x,} converges strongly to x,.
Let y, =1/(n + 1), n > 0. Then
€ =[Vur1 = (1= @)y, — a,T((1 = By, + BTy,
1
C(n+1)(n+2)

Hence ¥’ _ €, < «. However, limy, = 0 # lim x, = x, € F(T). Thus {x,}
is not almost T-stable, and hence not T-stable.
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