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ABSTRACT

Suppose E is an arbitrary real Banach space and K is a closed convex subset of

E, T : K —>• K is a Lipschitz strong pseudo-contraction mapping. It is proved that

the Ishikawa iteration scheme converges strongly to the unique fixed point of T. As

a consequence of this result, it is proved that both the Mann and Ishikawa iteration

methods converge strongly to the unique solutions of the operator equations Tx = f and

x + Tx = f for a given / 6 E where T : E —> E is a Lipschitz strong accretive map

and Lipschitz accretive map respectively. Finally it is proved that these results also hold

for the slightly more general class of Lipschitz strict hemi-contractions. Explicit error

estimates are given and in several cases convergence is at least as fast as a geometric

progression.

MIRAMARE - TRIESTE

February 1996

Research supported by a grant from TWAS (94-224 RG/MATHS/AF/AC), ICTP,
Trieste, Italy.



1. INTRODUCTION
Let E be an arbitrary real Banach space. A mapping T with domain D(T) and range

R(T) in E is called a strong pseudo-contraction if there exists t > 1 such that for all

x,y £ D(T), and r > 0,

\\x-y\\<\\{l + r)(x-y)-rt(Tx-Ty)\\ (1)

If i = 1 in (1), then T is called a pseudo-contraction. The class of pseudo-contractive

maps has been studied extensively by various authors (see for example [1],[2],[4],[6],[8-

10],[14-18],[22],[24],[32],[33]). Interest in pseudo-contractive mappings stems mainly from

their firm connection with the important class of accretive operators where a map U is

called accretive if the inequality

\\x - y\\ < \\x - y + s(Ux - Uy)\\ (2)

holds for every x,y £ D(U) and for all s > 0. Let / denote the identity operator, and

observe that inequality (1) implies for t = 1, that

\\x-y\\<\\x-y + r[(I-T)x-(I-T)y]\\ (3)

for all x, y £ D{T) and r > 0, so that, it follows from inequalities (1) and (2) that T is

pseudo-contractive if and only if (/ — T) is accretive. Consequently, the mapping theory

for accretive operators is closely related to the fixed point theory for pseudo-contractive

mappings.

Let E* denote the dual space of E and let J : E —> 2E* denote the normalized duality

mapping of E denned by

where {.,.) denotes the generalized duality pairing. In the sequel we shall denote single-

valued normalized duality mapping by j .

As a consequence of a result of Kato [20], it follows from inequality (2) that T is accretive

if and only if for each x, y £ D(T) there exists j(x — y) £ J(x — y) such that

(Tx-Ty,3(x-y))>0. (4)

Furthermore, T is called strongly accretive if for each x, y £ D{T), there exist j(x — y) £

J(x — y) and a real number k > 0 such that

(Tx-Ty,j(x-y))>k\\x-y\\2 (5)

If E = H7 a Hilbert space, then (4) and (5) are equivalent, respectively, to the mono-

tonicity and strong monotonicity properties of T in the sense of Minty [25].



The accretive operators were introduced in 1967 by Browder [3] and Kato [20]. Interest

in such mappings stems mainly from the fact that many physically significant problems

can be modelled in terms of an initial value problem of the form

du
— = -Tu, u{0) = u0 (6)
at

where T is either accretive or strongly accretive in an appropriate Banach space. Typical

examples of how such evolution equations arise are found in models involving either the

heat, or the wave or the Schrodinger equation (see for example [39]). An early fundamental

result in the theory of accretive operators, due to Browder [3], states that the initial value

problem (6) is solvable if T is locally Lipschitzian and accretive on E. Utilizing the

existence result for (6), Browder [3] also showed that if T is locally Lipschitzian and

accretive then T is m-accretive, i,e., (/ + T)(E) = E.

We observe that if N[T) denotes the kernel of T, then members of N(T) are, in fact, the

equilibrium points of the system (6). Consequently, considerable effort has been devoted

to developing constructive techniques for the determination of the kernels of accretive

operators (see for example [8],[10],[12],[14-17],[21],[27-29],[30],[33-35],[36],[37],[38]). More-

over, since a continuous accretive operator can be approximated well by a sequence of

strongly accretive ones, particular attention has been devoted to the determination of the

kernels of strongly accretive maps. In this regard and in Hilbert spaces, Vainberg [34] and

Zarantonello [37] introduced the steepest descent approximation method

xn+1 = xn - cnTxm xQeH, n = 0,1,2,..., (7)

and proved that if

(a) T = I + M where / is the identity map of H and M is a monotone and Lipschitz

map on H;

(b) cn = \e (0,1), n = 0,l,2,.. . ,

then the sequence {xn} defined iteratively by (7) converges strongly to an element of

N(T). This result has been extended to the class of bounded monotone operators (see for

example [8],[12],[21],[29],[35]). Typical of the results obtained is the following theorem:

THEOREM*
Let H be a Hilbert space, T : H —>• H a bounded strongly accretive map with a nonempty

kernel, N(T). Then the sequence {xn} defined iteratively by (7) with cn £ I2\lx converges

to an element of N(T).

Various authors have extended Theorem* to more general Banach spaces. Vainberg [35,

pp. 276-284] proved the convergence of (7) in Lp spaces for 1 < p < oo where T is Lipschitz

continuous and accretive; one of the authors [8] obtained the same result in Lp spaces,

p > 2, under less restrictive conditions. Crandall and Pazy [12] proved convergence of (7)

for a continuous strongly accretive operator on an arbitrary Banach space. Reich [29], and



also Liu [21] proved the convergence of (7) for an arbitrary strongly accretive operator on

uniformly smooth Banach spaces. We remark immediately that in these results in general

Banach spaces, the conditions imposed on the iteration parameter cn are not convenient

in applications. For example, Crandall and Pazy [12] required that at each iteration step,

Ck be determined by

Ck = n^T v where

and Hk is the least nonnegative integer such that

T ) ~ Txkl1 -

In [29], Reich imposed the assumption that S^Lo ^ l l ^ - i l l 2 < °°- Clearly, these conditions

cause computational difficulties and limit the applicability of the Theorems.

Recently, the following two iteration methods have been studied by various authors for

approximating solutions of nonlinear operator equations in Banach spaces.

(a) The Ishikawa Iteration Process (see for example [19],[31]) is defined as follows:

For K a convex subset of a Banach space E and T a mapping of K into itself, the sequence

{xn}^=0 is defined by x0 E K

yn = (1 - (3n)xn + @nTxn, n > 0

xn+i = (1 - an)xn + anTyn, n > 0

where {«n}^Lo a n ( i {Pn}%Lo a r e rea^ sequences satisfying the following conditions: (i)

(ii) lim /3n = 0, and (iii) S^Lo anfin
 = °°-

(b) The Mann iteration process (see for example [23],[31]) is defined as follows: With

K and T as in (a) the sequence {xn}^=0 is defined by XQ E K

xn+i = (1 - cn)xn + cnTxn, n > 0

where (i) 0 < cn < 1, (ii) lim cn = 0, and (iii) S^Lo cn = °°- In some applications,

condition (iii) is replaced by X^Loc™(l ~~ cn) = °°-

The iteration processes (a) and (b) have been studied extensively by various authors

and have been successfully employed to approximate fixed points of several nonlinear

mappings (when these mappings are already known to have fixed points) and to approxi-

mate solutions of several nonlinear operator equations in Banach spaces (see for example

[1],[5],[6-11],[14-17],[21-23],[31-33]). Moreover, it is well known that even though the two

processes are similar, they may exhibit different behaviors for different classes of nonlinear

mappings (see for example [31] for a detailed comparison of the two processes).
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In [6], one of the authors proved the following theorem in which the iteration param-

eters are easily evaluated.

T H E O R E M C (Chidume, [6])

Suppose K is a nonempty closed convex and bounded subset of Lp, p > 2 and T: K —>• K

is a Lipschitz strong pseudo-contraction. Suppose {cn} is a real sequence satisfying the

following conditions:

(i) 0 < cn < 1 for all n > 0; (ii) £^L0 cn = oo; and (Hi) E£°=o cl < °°.

Then the sequence {xn}^=0 defined iteratively by x0 E K,

Xn+1 = (1 ~~ cn)xn +

converges strongly to the unique fixed point ofT.

Since the publication of Theorem C, several authors have generalized it in various direc-

tions (see for example [9-11],[14-17],[22],[32],[33]). Most of these generalizations, however,

involve conditions on the iteration parameters which still depend on special geometric

properties of the underlying Banach spaces and therefore are not convenient in applica-

tions. For example the following theorems have recently been proved as generalizations

of Theorem C:

T H E O R E M D (Deng, [15])

Suppose q > 1 and K is a closed convex and bounded subset of a q-uniformly smooth

Banach space E. Suppose T : K —>• K is a Lipschitz strong pseudo-contraction with

Lipschitz constant L, and the sequence {xn} is defined by XQ E K,

xn+i = (1 - an)xn + anTyn, n > 0

yn = 0-- /3n)xn + /3nTxn: n > 0,

where {an} and {/3n} are real sequences satisfying the following conditions:

(%) 0 < as
n~

l < 2~1q(k-Lfin-L
2fin)(bLi+ h)-\ n > 0

(H) 0 < Ps
n~

l < min{2(L*L2) , (Mffi_ f t )}, n > 0, (in) E^°=o «n = oo, where k is

the constant appearing in the definition of a strong pseudo-contraction, b is the con-

stant appearing in an inequality which characterizes q-uniformly smooth Banach spaces,

h = max{l, q(q — l ) /2} , and s = min{2, q}.

Then the sequence {xn} converges strongly to the fixed point ofT

THEOREM TX (Tan and Xu, [33])

Let C be a nonempty bounded closed convex subset of a real q-uniformly smooth Banach

space E with 1 < q < 2 and T : C —>• C be a Lipschitz strongly pseudo-contractive

mapping. Let {an}™=o be a real sequence in (0,1) satisfying:

(i) 0 < an <sq, n > 0

where sq is the (smaller) solution of the equation

f(s) := q{q - 1)(1 - k)s - (1 + d.L^s^1 + ^qk = 0, s > 0



(ii) E£°=o an = °°
Then for any given x0 £ C, the iteration method generated from x0 by

xn+i = (1 - an)xn + anTxn

converges strongly to the fixed point ofT. Moreover, if an = sq for all n > 0, then

1
x~n ~ x*\\ < P9 \\xo — x * \ \ , w h e r e p = ( 1 qksq) G (0,1).

Convergence theorems similar to Theorems D and TX have also been proved for the

iterative approximation of solutions of the equation Tx = f, f G E where T : E —> E is

a Lipschitz strongly accretive operator (see [15],[33]).

Recently, Liwel Liu proved, for the Mann iteration process, the following interesting theo-

rem in general Banach spaces and in which the iteration parameter is independent of the

geometry of the underlying Banach spaces.

THEOREM L (Liwel Liu, [22])
Suppose E is a real Banach space, K is a nonempty closed convex and bounded subset of

E, and T : K —>• K is a Lipschitz strong pseudo-contraction. Let {cn} be a real sequence

satisfying the following conditions: (i) 0 < cn < 1, n > 0; (ii) lim cn = 0; and (in)
ft "̂OO

Y^Li cn = oo. Then the sequence {xn} defined iteratively by

converges strongly to the fixed point ofT.

It is our purpose in this paper to complement and extend Theorem L by first extending

the theorem to the Ishikawa iteration process. Our theorem will include Theorem L as

a special case. Then, as a consequence of our theorem, we shall prove, in arbitrary

real Banach spaces E and without any geometric restrictions on the iteration parameters

whatsoever, that both the Mann and Ishikawa iteration schemes converge strongly to the

unique solution of the operator equation Tx = / , for a given / G E, where T : E —>• E

is Lipschitzian and strongly accretive. We shall also prove convergence theorems for the

operator equation x + Tx = f when T : E —>• E is Lipschitzian and accretive. Finally, we

shall prove that the above results also hold for the slightly more general class of Lipschitz

strictly hemi-contractive maps. In all cases we shall give explicit error estimates. Our

theorems generalize most of the results that have appeared recently. In particular, the

results of [6],[8],[10],[14-17],[22],[33], and a host of others will be special cases of our

theorems.

2. MAIN RESULTS
In the sequel L > 1 will denote the Lipschitz constant of T.
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2.1. Convergence Theorems for Lipschitz Strong Pseudo-contractions

In this section M := 3L2 + L + 2. We now prove the following Theorems.

THEOREM 1
Suppose E is an arbitrary real Banach space and K is a closed convex subset of E. Let

T : K —>• K be a Lipschitz strong pseudo-contraction mapping. Let {an}™=0 and {/3n}^=0

be real sequences satisfying the following conditions:

(i) 0 < / 3 n , a n < 1, n > 0

fii) lim an = 0; lim Bn = 0

(in) ££Loan = co.
T/ien i/ie sequence {xn}^=0 generated from an arbitrary x$ £ K by

H>0 (8)

Xn+1 = (1 - «n)^n + «nT2/n, U > 0 (9)

converges strongly to the fixed point ofT.

PROOF The existence of a unique fixed point follows from Corollary 1 of Deimling [13].

Since T is strongly pseudo-contractive, then for all x,y G K, there exist j(x — y) € J(x — y)

and a constant t > 1 such that

Set ^ ^ = k. Then from inequality (10) we obtain

((/ - T - kl)x - (/ - T - kl)y, j(x - y)) > 0,

and it follows from Kato [20] that

\\x-y\\ < \\x-y + r[(I-T-kI)x-(I-T-kI)y\\, (11)

for all x,y G K and r > 0. From (9) we obtain

Xn Xn-\-\ ~r OLnXn ftni y n

= (1 + an)a;n+i + « „ ( / - T - kl)xn+1 - (1 - fe)o;na;n

+ (2 - A;)a2(a;n - Tyn) + an(Txn+1 - Tyn) (12)

Observe that

x* = (1 + ttn)x* + «„(/ - T - kl)x* - (1 - fc)anx*, (13)

so that

xn-x* = (1 + an)(xn+1 - x*) + an[(I - T - kl)xn+1 - (I - T - kl)x*]

- (1 - k)an(xn - x*) + (2 - k)a2
n(xn - Tyn) + «n(T

7



Hence

an

- ( 1 - k)an xn -x*\\ - ( 2 - &)a:2||£n -Tyn\

an)\\(xn+1 -x*)\\ - (1 - k)an\\xn-x*\\

- an\\Txn+1 -Tyn\\

- {2 - k)a2
n\\xn -Tyn\

-an\\Txn+1 -Tyn\\

Furthermore, we have the following estimates:

\-Ln+l X | | ^
[1 + (1 - k)an]

\xn-x(1 + «„)

-x*\\ = \\{l-8n)(xn-x*)+(3n(Txn-x*)

(2-k)a2
n\\xn-Tyn\\ + an\\Txn+1-Tyn\\ (14)

(L-l)f3n]\\xn-x*\\ < L\\xn-x

xn-Tyn\\ < \\xn-x*\\ + L\\yn-x*\\< [1 + L2]\\xn - x*\\, (15)

Txn+1 -Tyn\\ < L\\xn+1 -yn\\ = L | | ( l - an)(xn - yn) + an(Tyn - yn)\\

- an)f3n\\xn -Txn\\ + anL(l + L)

- an)f3n L)an]\\xn - x

(16)

where Kn := L(l + L)(l - an)8n + L(l + L)an. Using (15) and (16) in (14) we obtain the

following estimates:

— x

a2
n]\\xn -x*

\ \ \ x n
an)

- k)an][l -a

L)(1 - an)anpn\\xn - x*\\

kan]\\xn -x*\\+ an\\xn - x*\\[{2(1 + L2

A)«n]||xn - x*\\ + M(an + I3n)an\\xn — x*

n + Pn)an]\\xn-x*\\

[2(1 + L2) + L(l + L)]a xn - x*

L)}an

(17)

Since lim an = 0, lim 8n = 0 there exists an integer Â o > 0 such that

M{an + pn) < k(l -k), V n > NQ.

Thus

- k2an]\\xn - x*\\, V n > N

"~ x* exp(—k2 ^2 aj) -> 0 as n -> c», by (iii),
j=N0



completing proof of Theorem 1.

COROLLARY 1 Suppose E, K, and T are as in Theorem 1. Let {an}^=0 be a real

sequence satisfying the following conditions:

(i) 0 < an < 1, n > 0

fii) lim an = 0

(Hi) ££LO
an = CO.

Then the sequence {xn}^=0 generated from an arbitrary x0 G K by

Xn+i = (1 - OLn)xn + anTxn, n > 0

converges strongly to the fixed point ofT.

PROOF
Obvious from Theorem 1.

COROLLARY 2 Suppose E, K and T are as in Theorem 1. Let A = ^ , Tx :=

(1 — A)/ + AT. Then the sequence {xn}^=0 generated from an arbitrary x0 G K by

xn+i = T\xn, n > 0 converges strongly to the fixed point x* ofT and moreover,

\\xn — x*\\ < pn\\x0 — x*\\,

where p = ( l - - g f ) e ( 0 , 1 ) .

PROOF Set an = j3n = \ for each n in inequality (17) to obtain

| | z n + i -a ;* | | < [l-AA; + 2MA2]||xn-a;*|| = p\\xn - x*\\.

Iteration of this inequality now yields the desired result.

2.2. Convergence Theorems for Lipschitz Strict Hemi-contractions
Let E be a real Banach space. A mapping T with domain D(T) and range R(T) in E is

called a strict hemi-contraction (see for example [11]) if

F(T) = {x e D(T) :Tx = x)i-% and for all x € D(T), x* e F(T), and r > 0 there

exists t > 1 such that

\\x-x*\\<\\(l + r){x-x*) -rt(Tx-x*)\\

Remark 1 Every strongly pseudo-contractive mapping with a nonempty fixed point set

is strictly hemi-contractive. An example of a Lipschitz strictly hemi-contractive mapping

which is not strongly pseudo-contractive is given in [11]. Consequently, the class of Lip-

schitz strong pseudo-contractions with nonempty fixed point sets is a proper subclass of

9



the class of Lipschitz strictly hemi-contractions. It is also shown in [11] that T is strictly

hemi-contractive if and only if

(xTx,3(xx))>£)\\xx\\,

for all x G D(T) and x* £ F(T). With M as in section 2.1 and using the method of proof

of Theorem 1, the following Theorem is easily proved.

THEOREM 2
Suppose E is an arbitrary real Banach space and K is a closed convex subset of E. Let

T : K —>• K be a Lipschitz strict hemi-contraction mapping. Let {ttn}^Lo and {Ai}n°=o be

real sequences satisfying the following conditions:

(i) 0 < 8n, an < 1, n > 0

(ii) lim an = 0, lim 8n = 0

(Hi) E^=o an = CO.

Then the sequence {xn}™=0 generated from an arbitrary x0 <E K by (8) and (9) converges

strongly to the fixed point of T.

Remark 2 It follows from Remark 1 that Theorem 1 is in fact a corollary of Theo-

rem 2.

COROLLARY 3 Suppose E, K, and T are as in Theorem 2. Let {an}™=0 be a real

sequence satisfying the following conditions:

(i) 0 < an < 1, n > 0

(a) lim an = 0

(Hi) E^Lo^n = °°-
Then the sequence {xn}™=0 generated from an arbitrary x0 G K by

xn+i = (1 - oin)xn + anTxn, n > 0

converges strongly to the fixed point ofT.

PROOF Obvious from Theorem 2.

COROLLARY 4 Suppose E, K and T are as in Theorem 2. Let A = ^ ,

T\ := (1 — A)/ + AT. Then the sequence {xn}™=0 generated from an arbitrary x0 G K by
xn+i = T\xn, n > 0 converges strongly to the fixed point x* ofT and moreover,

xn — x*\\ < pn\\xo — x*

where p = (1 - ^ ) e (0,1).

10



PROOF Follows as in the proof of Corollary 2.

2.3. Convergence Theorems for the Equation Tx = /

In this section L* := 1 + L and M* := ZL\ + L* + 2.

THEOREM 3
Suppose E is an arbitrary real Banach space and T : E —>• E is a Lipschitz strong accretive

operator. Let {an}™=0 and {/3n}™=0 be real sequences satisfying:

(i) 0 < pn, an < 1, n > 0

fii) lim an = 0, lim 8n = 0

(̂ mj E™=oan = oo.

T/ien i/ie sequence {xn}^=0 generated from any x$ £ E by

yn = (l-(3n)xn + (3n{f+{I-T)xn), n>0 (18)

a;n + i = ( l - a n ) a ; n + a r , ( / + ( / - r ) 2 / n ) , n > 0 (19)
converges strongly to the unique solution of the equation Tx = / , / € E.

PROOF The existence of a solution to Tx = f follows from Browder [3] and the

uniqueness follows from the strong accretivity condition of T. Define S : E —> E by

Sx = f + (I — T)x. Let x* denote the solution. Then x* is a fixed point of S and S is

Lipschitz with constant L* = 1 + L. Furthermore,

( ( / - S ) x - ( I - S ) y , j { x - y ) ) > k \ \ x - y \ \ 2 , Vx, y E E ,

so that S is strongly pseudo-contractive. The rest of the argument is now essentially the

same as in the proof Theorem 1 and is therefore omitted.

COROLLARY 5 Suppose E andT are as in Theorem 3. Let {an}^=0 be a real sequence

satisfying the following conditions:

(i) 0 < an < 1, n > 0
oo

(ii) lim an = 0
n=0

(Hi) E™=oan = OO.

Then the sequence {xn}™=0 converges strongly to the solution of the equation Tx = f,

fEE.

PROOF Obvious from Theorem 3.

11



COROLLARY 6 Suppose E and T are as in Theorem 3. Let A = -^, and

S\ = (1 — A)/ + XS. Then the sequence {^n}^Lo generated from any x0 £ E by xn+i =

S\xnj n > 0 converges strongly to the solution x* of the equation Tx = f, f £ E.

Moreover,

\xn+1 -x*\\ < pn\\x0 -x*\\,

where

"=(1-8^)e<°'1»-
P R O O F Follows as in the proof of Corollary 2.

2.4. Convergence Theorems for the Equation x + Tx = /

THEOREM 4

Suppose E is an arbitrary real Banach space and T : E —>• E is a Lipschitz accretive

operator. Let {an}^Lo and {Ai}^Lo be real sequences satisfying:

(i) 0 < f3n, an < 1, n > 0

(ii) lim an = 0, lim 8n = 0

T/ien i/ie sequence {xn}^=0 generated from an arbitrary x0 £ E by

y n = 0 - - P n ) x n + P n { f - T x n ) , n > 0 (20)

^ n + i = ( 1 - c t n ) x n + a n ( f - T y n ) , n > 0 (21)

converges strongly to the solution of the equation x + Tx = f.

P R O O F The existence of a solution to the equation follows from Browder [3] and the

uniqueness follows from the accretivity condition of T. Define S : E —>• E by Sx = f — Tx.

Let x* denote the solution. Then x* is a fixed point of S and S is Lipschitz with the same

constant L as T. Furthermore,

{Sx - Sy,j(x - y)) = -{Tx - Ty,j(x - y)) < 0,

for all x,y £ E, so that (-S) is accretive. Thus

\\x-y\\< \\x-y-r(Sx-Sy)\\ (22)

for all x,y £ E and r > 0.

From (21) we obtain

an)xn+1 - anSxn+1 + al(xn - Syn) + an(Sxn+1 - Syn) (23)

12



x* = (1 + an)x* - anSx*,

an)(xn+i - x*) - an(Sxn+1 - Sx*) + an(xn - Syn) + an(Sxn+1 - Syn).

Also

so that

xn - x* =

Hence

-a£11(xn - Syn)\\-an\\(Sxn+1 - Syn)

> ( l + an) | |a ;n + i - x*\\ - a2
n\\(xn - Syn)\

Using (15) and (16) we obtain the following estimates:

1

(24)

- an\\(Sxn+1 - Syn)

\xn+1-x*\\ <
(1 + a
+an\\(Sxn+1 - Sy,

+an\\(Sxn+1 - Syn

xn - x* 11 + a 11 (xn - Syn

- an + a2
n] xn-x* L2)\\xn-x*\\ + o,nKn\\xn - x*

< [l-an\\\xn-x*\\ + K1a>l\\xn-x*

< (l-an)

+an[Kian

xn- x*

L)a2
n]\\xn - x*\

L)an]\\xn - x*

where K1 := 2 + L2. Since lim an = 0, lim f3n = 0, then for arbitrary k e (0,1) there

exists an integer 7V0 > 0 such that Kxan + L(l + L)(3n + L(l + L)an < k V n > No.

Thus

\xn+1-x*\\ < a;n-a;*||, V n > No

< \\XN0 — x*\\exp(—(1 — k) ^2 aj) -> 0 as n -> 00,
j=N0

completing the proof of Theorem 4.

COROLLARY 7 Suppose E and T are as in Theorem 4- Let {c t n }^ 0 be a real se-

quence satisfying the following conditions:

(i) 0 < an < 1, n > 0

fii) lim an = 0

13



(in) ££Loan = co.

Then the sequence {xn}^=0 generated from arbitrary x0 € E by

%n+l = ( 1 - OLn)Xn + a n ( f - T x n ) , U > 0

converges strongly to the solution of the equation x + Tx = f.

PROOF Obvious from Theorem 4.

COROLLARY 8 Suppose E and T are as in Theorem 4- Let A = -^ and

S\ = (1 — A)/ + XS. Then the sequence {xn}™=0 generated from any XQ € E by xn+i =

S\xnj n > 0, converges strongly to the solution, x*, of the equation x + Tx = f.

Moreover,

\xn+i -x*\\ < pn\\xNo -x*\\,

where p=(l-^)e (0,1).

PROOF Follows as in the proof of Corollary 2.

Remark 3. Theorem 1 is a significant generalization of Theorems D (Deng [15]) and

TX (Tan and Xu [33]) in the following sense:

1. Theorem 1 holds in arbitrary real Banach spaces whereas Theorems D and TX have

been proved in the restricted q— uniformly smooth Banach spaces.

2. In Theorem 1, unlike in Theorems D and TX, the boundedness of the subset K is

not required.

3. The restrictions on the iteration parameters an, j3n in Theorems D and TX (see

conditions (i) and (ii) in Theorem D and condition (ii) in Theorem TX) are most

undesirable. In our Theorems, these parameters are not dependent on either the

geometry of the underlying Banach spaces or on the Lipschitz constant of the op-

erator. In fact, they can be chosen at the beginning of the iteration process. For

example, in Theorem 1, a prototype for them is an = /3n = ^ - , n = 1, 2,....

Remark 4 It is now easy to see that Theorem 1 and Corollary 1 are significant gener-

alizations of Theorem C, Theorem D, Theorem TX, and a host of other theorems (see

for example Theorems 1 and 2 of ([8],[14],[16],[17]), Theorems 1-4 of [15], Theorem 2

of [32], Theorems 3.1, 3.2, 4.1, and 4.2 of [33]) to arbitrary real Banach spaces E and

without any dependence of the iteration parameters an, j3n on the geometric structure of

E. Moreover, for the special choices of the iteration parameters, Corollaries 2, 3, 6 and

14



8 yield convergence rate which is at least as fast as a geometric progression, better than

that obtainable from any of Theorems C, D and TX. Theorem 2 extends Theorem 1 to

the more general class of Lipschitz strict hemi-contractions.
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