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Let E be an arbitrary Banach space and T: E — E a Lipschitz strongly accretive
operator. It is proved that for a given f € E, the Ishikawa and the Mann iteration
methods with errors introduced by L.-S. Liu (J. Math. Anal. Appl. 194, 1995,
114-125) converge strongly to the solution of the equation Tx = f. Furthermore, if
E is a uniformly smooth Banach space and T: E — E is demicontinuous and
strongly accretive, it is also proved that both the Ishikawa and the Mann iteration
methods with errors converge strongly to the solution of the equation Tx = f.
Related results deal with the iterative approximation of fixed points of strongly
pseudocontractive operators, and the solution of the equation x + Tx = f, f€ E
when T: E — E is m-accretive.  © 1997 Academic Press

1. INTRODUCTION

Suppose E is an arbitrary Banach space. We denote by j the normalized
duality mapping from E into 2" given by

J(x) = {f € E*:Rex, f) = lIxII> = I£11%},

where E* denotes the dual space of E and { -, - ) denotes the generalized
duality pairing. It is well known that if E* is strictly convex then J is
single-valued. In the sequel we shall denote the single-valued normalized
duality mapping by j.
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An operator T with domain D(T) and range R(T) in E is called
strongly accretive if for all x, y € D(T), there exist j(x —y) € J(x — y) and
a constant k > 0 such that

Re(Tx — Ty, j(x —y)) = kllx — yl*. (1)

Without loss of generality we may assume k € (0,1). If k =0in (1) then T
is called accretive. If T is accretive and (I + rT)D(T)) = E for all r > 0
then T is called m-accretive.

Closely related to the class of strongly accretive operators is the class of
strongly pseudocontractive operators where an operator T is called a strong
pseudocontraction if for all x,y € D(T) there exist j(x —y) € J(x —y)
and a constant ¢ > 1 such that

1
Re(Tx — Ty, j(x = y)) < —lx -yl% (2)

If I denotes the identity operator, it follows from inequalities (1) and (2)
that T is strongly accretive if and only if (I — T) is strongly pseudocon-
tractive. Thus the mapping theory of strongly accretive operators is closely
related to the fixed point theory of strongly pseudocontractive operators.
Recent interest in mapping theory of strongly accretive operators, particu-
larly as it relates to existence theorems for nonlinear ordinary and partial
differential equations, has prompted a corresponding interest in fixed
point theory of strong pseudocontractions.

It is well known (see, for example, Theorem 13.1 of Deimling [11]) that
for any given f € E the equation

Tx=f (3)

has a unique solution if 7: E — E is strongly accretive and continuous, or
E is uniformly smooth and T: E — E is strongly accretive and demicontin-
uous. Martin [20] has also proved that if 7: E — E is continuous and
accretive then 7T is m-accretive so that for any given f € E the equation

x+Tx=f (4)

has a unique solution.

Several authors have applied the Mann iteration method [19] and the
Ishikawa iteration method [16] to approximate solutions (when they exist) of
Egs. (3) and (4) and fixed points of strong pseudocontractions with
nonempty fixed-point sets (see, for example, [2-9, 12-15, 23-25]).

Recently, Liu [18] introduced the following iteration methods which he
called Ishikawa and Mann iteration methods with errors.
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(a) Ishikawa Iteration Method with Errors [18, p. 116]. For a nonempty
set K of E and a mapping T: K — E, the sequence {x,};_, < K is defined
for arbitrary x, € K by

y.=1-B)x, +B,Ix, +u, n=0

X,01=01-a)x, + a1, +v,, n >0,

where {u,f’_, and {v,J);,_, are two summable sequences in E (i.e.,
Yo _ollu,ll <o and X0 _ollv,ll < ), {a,);_, and {B,),_, are two real
sequences in [0, 1] satisfying suitable conditions.

(b) Mann Iteration Method with Errors [18, p. 116]. With K, T, and x,
as in (a) the sequence {x,} in K is defined by

Xpo1= 1 —a)x, + a,Tx, +u,, n=>0,

where {u,} is a summable sequence in E and {«,} is a sequence in [0, 1]
satisfying suitable conditions.

If u, =0, v, =0 then the Ishikawa and Mann iteration methods with
errors reduce to the original Ishikawa and Mann iteration methods.

In his study of Ishikawa and Mann iteration methods with errors for
strongly accretive operators, Liu [18] proved the following theorems:

THEOREM L1 [18, p. 119]. Let E be a uniformly smooth Banach space
and T: E — E a Lipschitz strongly accretive operator with constant k € (0, 1)
and Lipschitz constant L > 1. Define S: E — E by Sx =f+x — Tx. Let
{u,} and {v,} be two summable sequences in E and let {«,} and { B,} be two
real sequences in [0, 1] satisfying the condition (i) lim, . «, = 0, (i) X7 _,
a, = o, and (iii) lim,_, _sup B, < k/(L? — k). For arbitrary x, € E, define
the sequence {x,} by

v, =@ —-B)x, + B,Sx, +u,, n>=0
Xpi1= (1 —a)x, +a,5, +v,, n=>0
Suppose {Sy,} is bounded. Then the sequence {x,} converges strongly to the
solution of the equation Tx = f.

THEOREM L2 [18, p. 123]. Let E be a uniformly smooth Banach space
and T: E — E a demicontinuous strongly accretive operator. Define S: E —
E by Sx = f + x — Tx and let {u,} be a summable sequence in E and {a,} a
real sequence in [0, 1] satisfying the conditions (i) lim «, = 0, (i) X _,a, =
. For arbitrary x, € E define the sequence {x,} by

Xpo1= (1 —e,)x, + a8, +u,, n > 0.
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Suppose {Sx,} is bounded. Then the sequence {x,} converges strongly to the
solution of the equation Tx = f.

Theorems similar to Theorems L1 and L2 are also proved in [18] for
approximation of fixed points of strongly pseudocontractive operators.

It is our purpose in this paper to extend Theorem L1 to arbitrary Banach
spaces, and without the boundedness assumption imposed on {Sy,}. Also
we extend Theorem L2 to the Ishikawa iteration method with errors. Our
iteration parameters {«,} and { 8,} will be such that Theorem L2 will be a
special case of our result. Furthermore, if E is an arbitrary Banach space
and T: E — E is strongly accretive and uniformly continuous, we prove
that the Ishikawa and the Mann iteration methods with errors converge
strongly to the solution of the equation Tx = f if {Sx,} and {Sy,} are
bounded. We also prove similar convergence results for the equation
x + Tx = f when T is m-accretive, and for fixed points of strongly pseudo-
contractive mappings with nonempty fixed-point sets.

We shall need the following result

THEOREM R [22, p. 89]. Let E be a uniformly smooth Banach space.
Then there exists a continuous nondecreasing function b: [ 0,0) — [ 0, )
such that b(0) = 0, b(ct) < cb(t) Ve = 1 and forallx,y € E,

lx +ylI* < lIxl1” + 2ReCy, j(x)) + max{llxll, Hylb(liyl).  (5)

2. MAIN RESULTS

In the sequel k € (0,1) is the constant appearing in the definition of
strongly accretive operators and L is the Lipschitz constant of T.

THEOREM 1. Let E be an arbitrary Banach space and T: E - E a
Lipschitz strongly accretive operator. Let {u,} and {Un} be two summable
sequences in E and {a,} and { B,} two real sequences in [0, 1] satisfying the
conditions (i) lim,_ o, =lim,_ B, =0, (i) X°_,a, = w. Then for any
given f € E the sequence {x,} defined for arbitrary x, € E by

Vo=@ =B)x, +B(f+ (I ~T)x,) +u, n=0
Y= —a)x, ta,(f+ (I =T)y,)+v, n=0 (6

converges strongly to the solution of the equation Tx = f.

Proof. The existence of a solution to the equation Tx = f follows from
[1, 10] and the uniqueness follows from the strong accretivity of 7. Let x*
denote the unique solution. Define S: E - E by Sx=f+ (I — T)x.
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Then x* is a fixed point of S and S is Lipschitz with constant L, =1 + L.
Moreover, for all x, y € E there exists j(x —y) € J(x — y) such that

Re((I — S)x — (I = 8)y, j(x—y)) > kllx —yl°.
Thus,
Re{(I =S —kI)x—(I—=S—kl)y,j(x—y)) =0,

and it follows from Lemma 1.1 of Kato [17] that for all x,y € Eand r > 0
the inequality

lx =yll<llx =y +r[(I=8S—kI)x— (=S —kl)y]ll (7)
holds. From (6) we obtain

Xp = Xn41 + oy X, — anSyn - Un
= (l + an)anrl + an(l i kl)xn+l - (l - k)anxn
+(2 - k)a;(x, — Sy,)

+ o, (Sx,0 = 8y,) = (L+ (2 - k) a,)u,.
Observe that
*=0A+a)x*+a,(I-S—k)x*—(1-k)a,x*,
so that
llx, — x*II

>(1+ a)lx,,, —x*

n

+
1+«

n

—(1=Kk)a,llx, —x* = (2 = k) a?llx, — Sy,

[(I—S—k)x,,, — (I =S —Kk)x*]l

= a,l18x, 1 = Sy,
“[L+ 2~ k)a ]l

> (1 +a,)llx, ., —x¥l = (1 =k) o, llx, —x* = (2 =k) a;llx, — Sy, |
— a8, =Syl = [+ (2=Kk)e,]llv,l  (using (7)).
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Hence
[1 + (1 - k)an]
1+ a,

lx,. 1 —x*Il < lx, —x*Il + (2 — k) alllx, — Sy,ll

St = Sl 1+ @-B)allnl  (8)
Furthermore we have the estimates
Iy, —x*l < (1 = B,)llx, —x*l + B,lISx, — x*II + llu, |l
< [T+ B.(Ls = D]llx, — 2+ llu, |
< Lyllx, = x*| + llu,ll,
llx, = Syl < llx, —x*l + Lylly, —x*l
< [1+ L 2lx, = x* + Ly, (9
15%, 1 = Syull < Lyllx, 0 = y,ll
< Ly [(1 = a)llx, =yl + a,llSy, =yl + llv,l]
<Ly [(1 = @) B,llx, = Sx,ll + (1 = ) llu, |
+a,(1+ L)y, — ¥+ llv,l]
<[L,(1+Ly)B, + a,L 21 +Ly)|lx, —x*I
+la, Ly (1 + L)+ Ly]llu,ll + Lillv,ll.  (10)
Using (9) and (10) in (8) we obtain

2, — x>l
[1 + (1 - k)an]
<
1+ a,

llx, — x5 + (2 — k) a2(1 + L ,2)lx, — x*

+(2 = k) @2Lyllu,ll + a,[ Lo (1 + Ly)B,
+a,L,2(1+ Ly)]llx, — x*

+a,[a,Ly(1+ L)+ L]llull + a,Llo,l
+[1+ (2= k)a,]llv,ll

<[t+ @ -K)a,][L - a, + af]lx, — x|
+[((2-k)L+L2)+ LA +Ly))e?

+Lo(1+Ly)a, B,]lx, —x*

+ L, (4+Ly)llu,l+ (3+L)lv,l
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< [1 - a,k + a]]llx, — x|
+[(2-k)Q+L,2)+L21+Ly))a?
+L,(1+Ly)a,B,]llx, — x*I
+ L, (4+Ly)lu,ll + (3+Ly)lv,ll
<[1 - a,k]llx, —x* + a,[(Ls® + 3L,2 + 3)a,
+L,(1+ Ly)B,]llx, — x*I

+L,(4+L)lu,ll+ (3+Ly)lv,ll.

Since lim[(L,* + 3L,*> + 3a, + L, (1 + L,)B,] = 0, there exists a posi-
tive integer N such that [(L,* + 3L .2 + e, + L, (1 +L,)B,]1 <kl —
k) for all n > N. Thus

1,01 — x* < [1 = a,k?]llx, = x| + Ly (4 + Lo)llw,ll + (3 + L)l

Vn = N.
Set p, = llx, —x*, 8, = a,k? 2 :=L,4+ L)lu,ll+ @@+ Llv,ll.
Then p,,, <[1 - §,lp, + o? forall n > N. Clearly, ©§, = «, and g2
< o, Hence it follows as in [7] that lim p, = 0, completing the proof of
Theorem 1.

Remark 1. Theorem 1 extends Theorem L1 and a host of other
theorems (see, for example, Theorem 1 of Chidume [3], Theorem 2 of
Chidume [5], Theorems 1 and 3 of Chidume and the author [8], Theorems
3.1 and 4.1 of Tan and Xu [25], Theorem 1 of Deng [12, 14], Theorems 1
and 3 of Deng [13], and Theorem 2 of Deng and Ding [15]) from Banach
Spaces which are either uniformly convex or uniformly smooth to arbitrary
Banach spaces. Moreover, the boundedness requirement imposed on {Sy,}
in Theorem L1 is not imposed in Theorem 1 of our result.

If E is a uniformly smooth Banach space we prove the following
theorem:

THEOREM 2. Suppose E is a uniformly smooth Banach space and T:
E — E a strongly accretive operator. Suppose Tx = f has a solution and
suppose S, {u,}, {v,}, {a,}, { B,}, and {x,} are as in Theorem 1. Suppose the
sequences {Sy,} and {Sx,} are bounded. Then the sequence {x,} converges
strongly to the solution of the equation Tx = f.

Proof. The strong accretivity of 7 implies that the solution of the
equation is unique. Let x* denote the unique solution of the equation. For
all x,y € E there exists j(x —y) € J(x — y) such that

Re(Sx — Sy, j(x —y)) < (1 — k)llx — yll*. (11)
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Using (5) and (11) we obtain the estimates

lx,, 1 — x*I°
<L~ a,)(x, —x*) + a,(Sy, —x)I°
+2ReCv,, j((1 = a,)(x, —=x*) + a,(Sy, —x*)))
+ max{l(1 — a,)(x, —x*) + a,(Sy, —x*)II, Lo, lb(llv,ll).

Let d = sup{llSx, — x*|l + ISy, — x*Il: n = 0} + |lx, —x*|l. Then by a
simple induction we obtain

n—1 o0
lx, —x*l<d+ Y lloll<d+ Y llvll, Vn=0.
k

=0 n=0
Hence {x,} is bounded, and

b, =1 < (L = @,) (x, = 2%) + a,(Sy, —x*)IP
+ Dyllv, |l + D, llv, lIb(llo,l),
for some constants D, and D,, since {x,, — x*} and {Sy, — x*} are bounded.
Set w, = (1 — a,)(x, — x*) + a,(Sy, — x)|I%. Then
w, < (1- an)zllxn —x*|)® + 2a,(1 — a,)Re(Sy, — x*, j(x, —x*))
+ max{(1 — a,)llx, — x*II, 1}a, ISy, — x*|b(a,llSy, — x*I)
<(1-a,)’llx, = x* + 2a,(1 — a,)(1 = k)lly, — 7
+2a,(1 - a,)Re(Sy, —x*,j(x, —x*) —j(y, —x*))
+ Dja,b(a,).

Hence

lx,,, — x> < (1 - a,)’llx, —x** + 2a,(1 — a,)(1 — k)lly, — x*?
+2a,(1 — a,)Re(Sy, —x*, j(x, —x*) —j(y, —x*))
+ Dya,b(,) + Dillv,ll + D,llo,lIb(llv,l). (12)
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Furthermore,
Iy, — x*I?
<l = B)(x, —x*) + B,(Sx, — x|’
+ 2ReCu,, j((1 = B,)(x, = x%) + B,(Sx, —x*)))
+max{li(1 - B,)(x, —x*) + B,(Sx, —x*)Il, }lu,lIb(llu,l)
<[ -8)" +2B,(1 - B2~ 0)]llx, —x*I’
+ D, B,b( B,) + Dgllu,ll + Dgllue, lIb(llu,l)
< (1 - B,k)’llx, —x*I> + D, B,b( B,) + Dgllu,|l + Degllu, l1b(lu,IT)
for some constants D,, D, Dgs. Let D :== max{D,:1 <i < 6}. Then
2,1 — x4
< [(1 = &) + 2a,(1 - @,)(1 — k) (1 = B,k)7|lx, — x*I’
+ 2Da,(1 — a,) (L~ k)[ B,b6( B,) + (1 + b(lu, )]
+2a,(1 = o)1y, — x*lj(x, —x*) = j(y, —x9)l
+ D[ a,b(a,) +llv,l(L + b(llv,l))]
<[1 - a,k]llx, = x*I° + ,[2D( B,b( B,)
+llu, (1 + b(llw,ll)) + Db( )
+2[1Sy, — x*llj(x, —x*) —j(y, —x*)ll] + Dllv,ll(1 + b(llv,ll)). (13)
Observe that
I(x, =x*) = (y =2 < Bullx, = Sx,ll + llw, [l >0 asn — e,

since lim B, = 0, lim|lu, |l = 0, and {x,, — Sx,} is bounded. Since {Sy, — x*},
{x, —x*}, {y, — x*} are bounded subsets of E, by the uniform continuity
of j on bounded subsets of E, we obtain lim||Sy, — x*||[j(x, — x*) —
j(y, —x®I = 0. Since {v,} is bounded and b is nondecreasing, then
b(llv,ID is bounded.

Set p, = llx, — x*||?, 5, = a,k,

0, = a,[2D( B,b(B,) + I, (1 + llu, 1)) + Db(a,)
+2018y, — x* 1 1i(x, = x*) = j(y, — )],
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and A, == D|lv,l1 + b([lv,ID). Then
i1 <[1—-8,]p, + 0, + A, Vn > 0.

Clearly £, = », g, = 0(§,), and £\, < . Hence it follows from Lemma
2 of [18] that lim p, = 0, completing the proof of Theorem 2.

CoROLLARY 1. Suppose E is a uniformly smooth Banach space and
T: E — E is a demicontinuous strongly accretive operator. Suppose S, {u,},
{v,}, {a,), { B}, and {x,} are as in Theorem 2. Suppose {Sy,} and {Sx,} are
bounded. Then the sequence {x,} converges strongly to the solution of the
equation Tx = f.

Proof. The existence of a solution follows from Deimling [11] and the
result follows from Theorem 2.

Remark 2. Theorem L2 is a special case of Corollary 1 for which

B.=0.

If the range of (I — T) is bounded, then {Sx,} and {Sy,} are bounded,
hence Theorem 1 of a recent result of Chidume [5] is also a special case of
Corollary 1 of our result for which g, = 0.

If we retain the hypothesis that {Sx,} and {Sy,} are bounded then we
obtain the following theorem in arbitrary Banach spaces.

THEOREM 3. Let E be an arbitrary Banach space and let T: E — E be a
uniformly continuous strongly accretive operator. Let {u,}, {v,}, {a,}, { 8.},
{x,}, {Sx,}, and {Sy,} be as in Theorem 2. Then the sequence {x,} converges
strongly to the solution of the equation Tx = f.

Proof. The existence of a solution follows from Deimling [10]. Let x*
denote the solution. Then as in the proof of Theorem 1 we obtain

TR Gl Cald L N RSP
xn+l X — 1+C( xn X ( )an xn yn

+ a8, 0 = Syl + [T+ (2 = k) a,]llv,l
< [1— a,k + a?]llx, —x* + (2 — k) a?2llx, — Sy,

+ an||an+l - SynH + [1 + (2 - k) an]”Un”‘
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It follows as in the proof of Theorem 2 that

lx, —x*l<d+ Y llvl=M and

n=0

lx, = Sy,ll < llx, — x*Il + ISy, — x*Il < 2M,
where d = sup{||Sx,, — x*[| + [|Sy, — x*[l: n > 0} + [|x, — x*|. Hence
Ix,. 1 —x* < [1—a,k]llx, —x*+ a,[5Ma, + IS, ., — Sy,l] +3llv,ll.
(14)
Observe that
1 =yl < (1 = a,)llx, = y,ll + 1Sy, = y,ll +llv,l
< (1-a,)B,lx, = Sl + (1 — @),
+ a,[I1Sy, = x* + lly, — x*II] + llv,lI
< (1= a,) B, [llx, =l + 118x, —x*I]
+(1 = a)llu,ll + a,[2M + llu,l] + v,
<2M(a, + B,) +llu,ll +llv,l >0 asn — o,

and by the uniform continuity of 7" we obtain lim||Sx,,; — Sy,|l = 0. Set
p, = llx, —x*l, 8, = e,k, o, = ,[5Ma, + |ISx,,, — Sy,lll, and A, =
3llv, |l in (14) to obtain

pps1<[1—-8,]p,+0,+1, VYnx>0.
Clearly 8, = =, g, = 0(§,), LA, < «, and hence it follows from Lemma
2 of [18] that lim p, = 0, completing the proof of Theorem 3.

Let K be a nonempty subset of a Banach space £ and T: K — E be a
strong pseudocontraction. Then from (2) we obtain

t—1

llx = ylI*.
" y

Re((/ = T)x = (I =T)y, j(x —y)) =

Set k= — 1)/t €(0,1), then
Re((I-T—-klI)x—(I—-T—kl)y,j(x—y)) >0,
and it follows from Lemma 1.1 of Kato that

lx =yl <llx—y+r[(I-T—k)x—(I—-T-k)yll. (15)
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Using (2) and (15) the following corollaries follow easily as in the proofs of
the previous theorems and the proofs are therefore omitted.

COROLLARY 2. Suppose E is an arbitrary Banach space and K is a
nonempty closed subset of E. Suppose T: K — E is a Lipschitz strongly
pseudocontractive mapping and suppose T has a fixed point in K. Suppose
{u,}, {v,}, {a,}, and { B,} are as in Theorem 1, and suppose the sequence {x,}
generated from an arbitrary x, € K by

ynz(l_ﬁn)xn+BnTxn+un’ nZO

Xpi1= (1 —a)x, + a1y, +0v,, n>0

is contained in K. Then {x,} converges strongly to the fixed point of T.

CoROLLARY 3. Suppose E is a uniformly smooth Banach space and K is a
nonempty closed subset of E. Suppose T: K — E is a strongly pseudocontrac-
tive mapping with a fixed point in K. Suppose {u,}, {v,}, {a,}, { B}, and {x,}
are as in Corollary 2, and {Tx,} and {Ty,} are bounded. Then {x,} converges
strongly to the fixed point of T.

COROLLARY 4.  Suppose E and K are as in Corollary 2 and T: K — E is
a uniformly continuous strongly pseudocontractive mapping with a fixed point
in K. Suppose {u,}, {v,}, {a,}, { B}, {x,}, {Tx,}, and {Ty,} are as in Corollary
3. Then the sequence {x,} converges strongly to the fixed point of T.

Remark 3. In [18] Liu stated a theorem (see Theorem 2 of [18]) similar
to Corollary 2 in uniformly smooth Banach spaces but without the hypoth-
esis that T has a fixed point in K. In his proof of the theorem he claimed
that the existence and uniqueness of a fixed point of T are direct
consequences of Proposition 3 of Martin [14]. This is false. If T has a fixed
point, the uniqueness follows directly from the definition of 7. However,
the T in the theorem need not have a fixed point in K as can be seen from
the following simple example:

ExAMPLE 1. Let N denote the reals with the usual norm and K = [0, 1].
Define T: [0,1] > N by Tx = 3x + 1. Then T is a contraction and hence
strongly pseudocontractive. Clearly T has no fixed point in K.

Even if T is a selfmapping of K, the following example shows that T
still may fail to have a fixed point in K if K is not convex.

ExampLE 2. Let K={1,2} ci. Define T: K-> K by T(Q) =2,
T(2) = 1. Then T is strongly pseudocontractive and has no fixed point
in K.
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As a consequence of Remark 3, Corollary 2 extends Theorem 2 of Liu
[18] from uniformly smooth Banach spaces to arbitrary Banach spaces.
Moreover, the boundedness condition imposed on the range of T in
Theorem 2 of [18] is not imposed in our Corollary 2. Also Theorem 4 of
[18] is a special case of Corollary 3 of our result for which g, = 0.

COROLLARY 5.  Let E be an arbitrary Banach space and let T: E — E be
a Lipschitz accretive operator. Let {u,}, {v,}, {e,}, and { B,} be as in Theorem
1. Then for any given f € E the sequence {x,} generated from an arbitrary
x, € E by

xn+l=(1_an)xn+an(f_Tyn)+Un' HZO

converges strongly to the solution of the equation x + Tx = f.

Proof. The existence of a solution follows from Martin [20] and the
uniqueness follows from the accretivity of 7. Let x* denote the solution.
Define S: E — E by Sx = f — Tx. Then x* is a fixed point of S and § is
Lipschitz with the same Lipschitz constant as 7. Furthermore, for all
x,y € E there exists j(x —y) € J(x — y) such that

Re((I — S)x — (I —8)y,j(x —y)) = llx —yl*

The rest of the argument is now essentially the same as in the proof of
Theorem 1 and is therefore omitted.

The proofs of the following corollaries—Corollaries 6 and 7—also
follow as in the proofs of Theorems 2 and 3, respectively, and are
therefore omitted.

COROLLARY 6. Suppose E is a uniformly smooth Banach space and
T: E - E is m-accretive. Suppose S, {u,}, {v,}, {e,}, { B,), and {x,} are as in
Corollary 5, and that {Sx,} and {Sy,} are bounded. Then the sequence {x,}
converges strongly to the solution of the equation x + Tx = f.

COROLLARY 7. Let E be an arbitrary Banach space and let T: E — E be
a uniformly continuous accretive operator. Let S, {u,}, {v,}, {a,}, { B}, {x,},
{Sx,}, and {Sy,} be as in Corollary 6. Then the sequence {x,} converges
strongly to the solution of the equation x + Tx = f.
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