See discussions, stats, and author profiles for this publication at:

Ishikawa Iteration Process for
Nonlinear Lipschitz Strongly
Accretive Mappings

ARTICLE /7 JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS - JUNE
1995

Impact Factor: 1.12 - DOI: 10.1006/jmaa.1995.1200

CITATIONS READS
59 7

2 AUTHORS, INCLUDING:

‘ University of Nigeria

53 PUBLICATIONS 1,164 CITATIONS

SEE PROFILE

Available from: Micah Osilike
Retrieved on: 28 December 2015


http://www.researchgate.net/publication/246557200_Ishikawa_Iteration_Process_for_Nonlinear_Lipschitz_Strongly_Accretive_Mappings?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/246557200_Ishikawa_Iteration_Process_for_Nonlinear_Lipschitz_Strongly_Accretive_Mappings?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Micah_Osilike?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Micah_Osilike?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Nigeria2?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Micah_Osilike?enrichId=rgreq-920bf897-2bdb-4d13-9d66-29a520762c85&enrichSource=Y292ZXJQYWdlOzI0NjU1NzIwMDtBUzoyMTA4NDYwMTkwMDIzNzBAMTQyNzI4MTAxNjMzOA%3D%3D&el=1_x_7

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 192, 727-741 (1995)

Ishikawa lteration Process for Nonlinear Lipschitz
Strongly Accretive Mappings

C. E. CHIDUME*

International Centre for Theoretical Physics, Trieste, Italy
AND

M. O. OSILIKE

Department of Mathematics, University of Nigeria, Nsukka, Nigeria
Submitted by V. Lakshmikantham

Received August 22, 1991

Let E=L,, p=2andlet T:E— E be a Lipschitzian and strongly accretive
mapping. Let §: E — E be defined by Sx = f — Tx + x. It is proved that under
suitable conditions on the real sequences {a,}7-p and {8,})5-;, the iteration process,
X0 € E, xp0; = (1 = apx, + a,S[(1 — Bp)x, + B,5x,], n = 0, converges strongly
to the unique solution of 7Tx = f. A related result deals with the iterative approxima-
tion of fixed points for Lipschitz strongly pseudocontractive mappings in E. A
consequence of our result gives an affirmative answer to a problem posed by
C. E. Chidume (J. Math. Anal. Appl. 151, No. 2 (1990), 453-461). © 1995 Academic

Press, Inc.

1. INTRODUCTION

Let E be a real normed linear space. A mapping 7 with range R(T) in
E is called accretive [3] if for each x, y in E and all real numbers ¢t > 0
the following inequality is satisfied:

lx =y = lx —y + t(Tx = Ty)|. (1)
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728 LIPSCHITZ STRONGLY ACCRETIVE MAPPINGS

If E is a Hilbert space the accretive condition (1) reduces to
(Ix = Ty, x —y) =0,

for all x, y in E. The accretive operators were introduced in 1967 by
Browder [3] and Kato [20]. An early fundamental result in the theory of
accretive operators, due to Browder, states that the initial value problem

du
= 4+ = =
P Tu=0, U = U,

is solvable if T is locally Lipschitzian and accretive on E. The accretive
operators are intimately connected with the important class of pseudocon-
tractive mappings. For K a subset of E, a mapping T: K — K is said to
be a strong pseudocontraction if there exists t > 1 such that the inequality,

e =yl =l + x — y) — re(Tx — Ty)|

holds for all x, y in K and r > 0. If, in the above definition, ¢t = 1, then
T is said to be a pseudocontractive mapping. Pseudocontractive mappings
have been studied by various authors (see e.g., [1, 3, 5, 8, 20]). Interest
in such mappings stems mainly from the fact that a mapping T is pseudo-
contractive if and only if (/ — T) is accretive [3, Proposition 1]. The
mapping theory for accretive operators is thus closely related to the fixed
point theory of pseudocontractive mappings.

In {4}, Browder proved the following surjectivity result: If T7: F— E is
locally Lipschitz and accretive then T is m-accretive; i.e., the map (I +
T) is surjective. This result was subsequently generalized by Martin [23]
to continuous accretive operators. An obvious consequence of this result
is that the equation,

x + Tx = h, 2

for a given h in E, has a solution. Zarantonello [36] proved that, if H is
a Hilbert space, the solution is unique. In fact, it is easy to see that if T
is accretive on any Banach space E and Eq. (2) has a solution, then the
solution is necessarily unique.

For a Banach space E, let J denote the normalised duality mapping
from E to 2E* given by

Jx = {f* € EX:||ff = |xf = &, /),

where E* denotes the dual space of E and (, ) denotes the generalised
duality pairing. It is well known that if £* is strictly convex, then J is
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single-valued and if E* is uniformly convex, then J is uniformly continuous
on bounded sets (see, e.g., [4, 33]).

A strong notion of accretiveness has been introduced. A mapping T of
E into E is said to be strongly accretive (see, e.g., [1]) with constant k if
for each x, y in E there exists € J(x ~ y) such that

(Tx = Ty, 0) = k|x — y|?, 3)

for some real constant k > 0. Without loss of generality we may assume
that k € (0, 1). Strongly accretive mappings have been studied extensively
by various authors (see, e.g., [1, 4, 17, 24, 26, 27]). In[1], Bogin considered
the connection between strong pseudocontractions and strongly accretive
operators. He proved that T is a strong pseudocontraction if and only if
(I — T) is strongly accretive. He then proved a fixed point theorem of
Browder [4] for Lipschitz strongly accretive operators. Since (7 ~ &I) is
accretive if T is strongly accretive with constant k, it follows from Martin
(23] (see also Morales [24]) that if E is a Banach space and T:E — E
is continuous and strongly accretive then T is surjective. Consequently
the equation

Tx = f, 4)

for a given fin E has a solution in E.

Methods for approximating solutions of Egs. (2) and (4) (when they are
known to exist) have been investigated by several authors. For Eq. (2),
if E is a Hilbert space and 7 is monotone and Lipschitzian with Lipschitz
constant 1, Dotson [14] proved that an iteration process of the type intro-
duced by Mann (now generally called the Mann iteration process; see,
e.g., [22)) converges strongly to the unique solution of Eq. (2). This result
has been extended, in a series of papers, by one of the authors (see [9,
11, 12}) to the case where E is now any real Banach space with a uniformly
convex dual space, E*.

It is an open question (see, e.g., [8, 32]) whether or not the Mann
iteration process converges to a fixed point of T: C — C if T is a Lipschitz
pseudocontractive mapping of C into itself, where C is a subset of a Hilbert
space and T has a fixed point in C. To iteratively approximate fixed points
of Lipschitz pseudocontractive mapping, Ishikawa [18] introduced an iter-
ation process (now generally referred to as the Ishikawa iteration process)
which, in a sense, is more general than the Mann iteration process and
which, under suitable conditions, converges to a fixed point of Lipschitz
pseudocontractive mappings in Hilbert spaces (when a fixed point is known
to exist). The Mann iteration process and the Ishikawa iteration process
are now employed in approximating solutions of several nonlinear opera-
tors equations in Banach spaces (see, e.g., [5, 7, 8-17, 19, 22, 24-33)).
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More recently, the Mann iteration method has been applied to nonexpan-
sive and pseudocontractive maps in hyperbolic spaces and excellent re-
sults have been obtained (see, e.g., [2, 31]).

In [32] Rhoades compared the performance of these two iteration pro-
cesses, He showed that even though the iteration processes are similar,
they may exhibit different behaviors for different classes of nonlinear
mappings. Thus, it is of interest to examine the behaviour of the two
processes for any given class of nonlinear mappings.

For the operator equation (4), one of the authors [12] has proved that
the Mann iteration process converges to a solution of the equation when
E = L,, p=2. As a consequence of this he proved [12, Theorem 2] that
if C is a closed convex and bounded subset of £ and 7:C — Cis a
Lipschitz strongly pseudocontractive mapping of C into itself then the
Mann iteration process converges strongly to the unique fixed point of 7.
He then posed the natural question [12, Question 2, p. 460], ‘‘Can the
Ishikawa iteration process be employed for approximating a solution of
Eq. (4) if T is Lipschitz and strongly accretive and E = L,, p = 2?7

It is our purpose in this paper to give an affirmative answer to this
question by proving that if E = L, p = 2, the Ishikawa iteration process
converges strongly to a solution of Eq. (4) when T: E — E is Lipschitz
and strongly accretive. As an immediate consequence of this result we
prove that the Ishikawa process can be used to approximate the fixed
point of a Lipschitz strongly pseudocontractive maps in E, when such a
fixed point is known to exist, thus resolving in the affirmative Question
2 of [12, p. 460].

2. PRELIMINARIES

In the sequel we shall make use of the following results:
A Banach space E is called an upper weak parallelogram space with
constant b > 0 if

e+ ylI2 + &llx = ylF = 2]l + 2 {ly|f ©)

holds for all x, y in E. If L, has at least two disjoint sets of positive
finite measure, it is proved in [6] that L, spaces, p = 2 are upper weak
parallelogram spaces with (p — 1) as the smallest number b such that
inequality (5) is satisfied for all x, yin L,, p = 2.

In the sequel we shall make use of a characterization of upper weak
parallelogram spaces in terms of normalized duality mapping given in the
following results.

THEOREM B (Bynum [6]). Let E be a Banach space with normalised
duality mapping, J. Then E is an upper weak parallelogram space with
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constant b > 0 if and only if, for each x, y in E, j € Jy,
Ix + ylI? = b |« + Iyl + 2(x, j). (6)

ForE = L,, p =2, J is single-valued and inequality (6) can be re-stated
as (see, e.g., [9, 12])

Ix +ylP == DxP+ [[yIP + 2x, j(¥). )

For the rest of this paper, E = L,, p = 2, where L, is assumed to have
at least two disjoint sets of positive finite measure, and the single-valued
duality map is denoted by j. The Lipschitz constant of T is denoted by
L(=1) and the constant appearing in the definition of a strongly accretive
map is denoted by & € (0, 1).

3. MAIN RESULTS

We prove the following theorems.

THEOREM 1. Let T:E — E be a Lipschitzian and strongly accretive
map, and let S:E — E be defined by Sx = f — Tx + x. Let
{a, )i and {B,}i-q be real sequences satisfying:

(i) 0=R8,=<a,=<kow+2k—- 17" for each n, where @ = (p —
DL +2L,(0+L)andL, =1+ L.
() 2., a,= .
Then, given f € E, for arbitrary x, € E, the iteration process,

xn+l = (1 - an)xn + a"S[(l - Bn)xn + 3,,an], n Z 0’ (8)

converges strongly to the unique solution of Tx = f.
Moreover, if a, = k[w + 2k — 1]7! for all n, then

lxner = x4 = p™2 |lx, = ),
where x* denotes the solution of Tx = f and
p=1—-kw+2k—-1]"1€(O,1).
Proof. The existence of a solution to Tx = f follows from Morales

[24]. Let x* be a solution. Observe that x* is a fixed point of § and that
S is Lipschitz with constant L, = (1 + L). Moreover, for each x, y in E,

(Sx — Sy, jix —y) = (1 - bfx — y|~ )
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Rewrite (8) as
Xp =1 ~ayx, + a,Sy,, n=0, (10)
where
yo=0 - B)x, + B.Sx,, n=0. (n
Using (7), (9), (10), and (11) we obtain

% — x*F =[] = @ )(x, — x*) + o, (Sy, — x¥)
=(1 - a,)llx, = x* + (p — Da2Li |y, ~ x*|
+ 2a,(1 — a XSy, — x*,j(x, — x*))

and
lys = x* =1l = BIx, — x*) + B,(Sx, — x*)|
= {1+ B, (L, — DIx, — x| (12)
=L,Jx,—x*, sinceB,<]1.
Also,

(Syn — x*, j(x, — x*)) = (Sy, — Sx,,jlx, — x*)) + (Sx, — x*, j(x, — x*))
and

(SYn = Sxp, jx, = x*)) < |8y, = S|l [ x, — x|
= Ly |1Bo(Sx, ~ x| [l x, — x*
= L B,ll}Sx, — x*| + flx, — ¥l {1, — x*
= LB, 1+ Ly, - x*.

Thus,
(Y, = x*,j(x, = x) = LoB,(1 + L) |t = x*[P + (Sx, = x*,j(x, = x*)
LB+ L) |x, —x*2+ 1 - Ky x, — x*
and
Xper — 2P = (1 — @) |x, — x*P + (p — Da2Li|lx, — x*?

+20,(1 = a )L B(1 + L) | x, — x*|
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+ (=K x, —x1=<{1-a)+ 2a,(1 —a, )1 —k)
+(p ~ DajLy + 200L,(1 + L], — x*|P,
since B8, < a,,(l —a,) <,

=[(1 = a,)* + 2a,(1 — &, )(1 — k) + alo] || x, - x*|2,

=[1 = 2a,k + aX(w + 2k — ]| x, — x*

={1-2a,k+ akl|x,— x*’, by condition (i)

=11 — k] || x, — x*F,

so that

lxpe1 — ¥ =< exp(—ka,) || x, — x*|2. (13)

Iterating the last inequality from n = 1 to N, we obtain

N
|xne1 — x*? < exp (—kz a,,) lx, —x*f—>0 asN—x,
n=1

x

since 2a, = ». Hence {x,}7_, converges strongly to x*.
Error Estimate. If a, = k(w + 2k — 1)7! for each n, then
lxner = x*F = (1 = Ko + 2k - 117 ||x, - x*
=1 - Ko+ 2k - 117 ||x, — x*|
so that
lxnsr = x4 = p™% ||, — x|,
where

p=1—-klo+2k—-11"T€(0,1).

CoroLLARY 1. Let E, T, and S be as in Theorem 1, and let {a,};_o be
a real sequence satisfying:
(i) 0=<a,=<kwo+2k~- 11" for each n,
(ii) 2:20 o, = o,

Then given f € E, for arbitrary x, € E, the iteration process
Xop = (1 ~a)x, + a,5x,, n=0,

converges strongly to the unigue solution of Tx = f.
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THEOREM 2. Let C be a nonempty closed convex and bounded subset
of E, and T: C — C a Lipschitz strongly pseudocontractive mapping with
constant t. Let {a, ). and {B,}i-o be real sequences satisfying:

) 0=<8,=a,<ko+ 2k* — 117", where k* = (t — DIt €
O, Dandw = (p — DL* + 2L(1 + L) > 1

(i) Zo_oa,=c.

Then, for arbitrary x, € E, the iteration process,
Xpey = (1= a)x, + o, T(1 = Bx, + B,Tx,], n=0,

converges strongly to the unique fixed point of T.

Proof. The existence of a fixed point follows from Deimling [13]. Let
x* denote a fixed point of T. Since T is strongly pseudocontractive we
have (see, e.g., [1, 8])

- Tx -0 = Dy, jee - =L ypp (14

for each x, y in C.
Setk*=(¢ - 1)/trandy, = (1 — B,)x, + B,Tx,. Using (7) we obtain

x50 = x*P =1 = a)x, = x*) + e (Ty, — x*)|}
= -a)lx, - x*F+ (p — DaiLl?lly, — x¥|
+ 2a,(1 — a XTy, — x*, j(x, — x*))

and
Iy, = x* =l = B)x, — x*) + B(Tx, — x*)|
=[1+ B L= Dlfx, —x¥
=Llx,— x*.
Moreover,

Ty, — x*, j(x, = x*) =Ty, — Tx,, j(x, = x*)) + (Ix, — x*, j(x, — x*))
and

Ty, = Tx,, e, = x*N < [Ty, = T, || | x, = x|
= L{BTx, ~ x| l1x, — x|
=LB,(1+ L) |x, — x*~



CHIDUME AND OSILIKE 735

Thus,
(Ty, — x*,jx, — x*) < LB,(1 + L) || x, — x*|* + (Tx, — x*, j(x, — x*))
=LB,(1 + L) ||x, = x* + || x, — x|
== Tx, — U = T)x*, j(x, — x*))
= LB (1 + L)[lx, = x*|F + (1 = k*) lx, — x*{P.
Finally,
hxpe —x* P =11 - a, + 2a,(1 — o)1 — k*) + (p — De2L?
+2a2L(1 + L)) || x, — x*|}
= [1 = 2a,k* + oX(w + 2k* — D1]|x, — x4,
=1 = 20,k* + o, k*] || x, — x*F, by condition (i)

= [1 - ank*] “xn - X*uzi

and the result follows as in the proof of Theorem 1.

COROLLARY 2. Let E, C, and T be as in Theorem 2, and let {a,};_,
be a real sequence satisfying
() 0=<a,<k*o+ 2k*— 117", n=0, where k* = (t — 1)/t, and
w=(p— DL*+ 2L(1 + L).
(i) Zo_gon=®.

Then, for arbitrary x, € E, the iteration process,

Xpep = —a)x, + a,Tx,, n=0,

converges strongly to the unique fixed point of T.

Remark 1. Theorems 1 and 2 resolve in the affirmative Problem 2 of
Chidume [12, p. 460].

Remark 2. The results of this paper and those of [12] show that either
the Mann or the Ishikawa iteration process can be used to approximate
solutions of nonlinear equations for Lipschitz strongly accretive and
strongly pseudocontractive mappings in L, spaces, p = 2. Furthermore,
the error estimates obtained for the two methods for these classes of
nonlinear mappings are of the same order, so that for computational pur-
poses, the Mann process may have some advantage due to its simplicity.

THEOREM TX1 [35, Theorem 3.1, p. 13]. Lett < g =<2 and E be a
g-uniformly smooth Banach space. Let T: E — E be a Lipschitz strongly
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accretive operator. Define S: E— E by Sx = f — Tx + x. Suppose that
{c.Yi o Is a sequence of reals satisfying:

(i) 0<ec,=t, foraln=1, where t, is the (smaller) solution of
the equation

) :=qlg— DA -kt — (1 +d,LN9" + igk = 0, t>0, (16)
with L the Lipschitz constant of S and d, the constant appearing in
inequality (15).

(i) Z,c,=>.
Then for arbitrary x, € E, the Mann sequence,

Xy = — e )x, + ¢, S5x,, n=0,

converges strongly to the unique solution x* of the equation Tx = f.
Moreover, if c, = t, for all n = 1, then

“'xnﬂ - x*“ = pn/q “X| - X*”’

where p = 1 — § gkt € (0, 1).

THEOREM Tx2 [35, Theorem 3.2, p. 16]. Let K be a nonempty bounded
closed convex subset of a q-uniformly smooth Banach space E, | < g =
2, and T: K~ K be a Lipschitz strongly pseudocontractive mapping with
a constant t > 1 and a Lipschitz constant L. Let {c,}:_, be a sequence
of real numbers satisfying the properties (1) and (i) of Theorem TX1 with

¢ = (t — )/t. Then for a given x, € K, the Mann sequence

Xoy = = c)x, + ¢, Tx,, n=0,

converges strongly to the unique fixed point of T.

Remark 3. Corollaries 3.1 and 3.2 of [35] are special cases respectively
of Theorems TX1 and TX2 in which E = L, (1 <p <2).

Remark 4. Itis clear that condition (i) of Theorem TX1 (which is also
imposed in Theorem TX2 and in Corollary 3.1 and Corollary 3.2 of [35])
is not convenient for applications since ¢, is connected with a solution of
Eq. (16).

In the following theorems we prove convergence theorems which elimi-
nate this problem completely.

THEOREM 3. Let E be a qg-uniformly smooth Banach space and
T:E — E be a Lipschitz strongly accretive operator. Define S E — E
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by Sx = f — Tx + x. Suppose {c,}:_, is a sequence of real numbers
satisfying the following conditions:

(i) limc,=0
(i) XZ,c,==.
Then, for arbitrary x, € E, the Mann sequence {x,};_, defined by

Xorp = —cx, + ¢, 5x,, n=0,

converges strongly to the unique solution of Tx = f. Moreover, if ¢, =
1/(n + Dk(1 — k) for all n = 1, and x* is the unique solution, then

%1 = x*| = O(m~Y9).

Proof. The existence of a solution follows from Morales [24] and
uniqueness follows from the strong accretivity of 7. Let x* denote the
solution. Observe that x* is a fixed point of §. Clearly, for arbitrary x,
y € E, we have

(Sx =Sy, Jx—ynp=0-k|x-y|.
If L denotes the Lipschitz constant of S we have

ey = x4 =11 = c)x, = x*) + (Sxy — XM

=[(1 =)+ q(l = ke, (1 —c)? ' +d L% x, — x* .
7

Condition (i) implies that there exists an integer N, > 0 such that for all
n = Ng,

dLici™' = k. (18)
For arbitrary x > 0, consider the function
hx) =1 + x)4, qg>1

Then, there exists £ € (0, x) such that
).’2
h(x) = h(0) + xh’(x) + 5 R'(€).

Observe that £"(£) = 0 so that the last equation reduces to

h(0) + xh'(x) = h(x).
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Put x = (1 — K¢, (1 — ¢,)7! in this inequality to get

A-c)+q(l —kc,(1 —c)'=d k)=~ kep), (19)
since g > 1. Substitution of (18) and (19) in (17) yields

Nxpe —x*2=11 = k(1 — k), )l x, — x*| foralln= N

N
<exp (—k(l -k > c,) fx; = x*7—=0 asN-—x,

=Ny
using Condition (ii). Hence x,— x* as n — . The error estimate follows
as in [10]. The proof is complete.

THEOREM 4. Let K be a nonempty bounded closed convex subset of
a g-uniformly smooth Banach space E and T:K — K be a Lipschitz
strongly pseudocontractive mapping with constant t > 1 and a Lipschitz
constant L. Let {c, 5., be a sequence of real numbers satisfying the
SJollowing conditions:

(iiy lim,,.c,=0
(ii) E,, C, = .
Then for a given x4 € K, the Mann sequence {x,}._, defined by

X =0 -c)hx, + ¢, Tx,, n =0,

converges strongly to the unique fixed point of T.

Proof. The existence and uniqueness of a fixed point follow from
Deimling [13] and the strong pseudocontractivity of T, respectively. Let
k = (t — 1)/t and let x* denote the unique fixed point of 7. Clearly,

(I -Dx—U—-Dy, Jfx—y»=klx-yl

for all x, y € K. Proceeding as in the proof of Theorem 3 we obtain
the estimates

bewer = x¥9= (1 = )7 |lx, — x¥|* + gen(1 = )97 KTx, — Tae*, J (x,, — x*))
+d 8| Tx, — Tx*||4
=1 —c)x, = x¥|? = gc, (1 = )9 Xx, = Tx,, I fx,, — x*))
+qo(l = c)7 e, = x¥|7 + dyctl? | x, — x*|4

=1 —¢)?+ gl = ke, (1 — ¢ )+ d el | x, — x*|9,
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which is exactly inequality (17). The rest of the argument now follows as
in the proof of Theorem 3 to yield that x, — x* as n — . The proof
is complete.

Remark 5. 1t is known (see, e.g., [34, p. 1131]) that

| p — uniformly smooth, ifl<p=2,
L,(orl)is . .
2 — uniformly smooth, ifp>2.

It then follows that the following corollaries are immediate consequences
of Theorems 3 and 4, respectively.

CoROLLARY 3. Suppose that E=L,(orl),1 <p <=,andT, S, and
c, are as in Theorem 3. Then the Mann sequence {x,}, ., defined by x, € E,

X1 = = ¢cx, + ¢, Sx,, n=0,

converges strongly to the unique solution of the equation Tx = f.

CorOLLARY 4. Let E=L,(orl,), 1 <p <=, K be a bounded closed
convex subset of E, and T: K — K a Lipschitz and strongly pseudocon-
tractive mapping with a constant t > 1 and a Lipschitz constant L. Let
¢, be as in Theorem 4. Then for a given x, € K, the Mann sequence

Xpoy = —cx, + c,Tx,, n=0,

converges strongly to the unique fixed point of T.

Remark 6. Corollaries 3 and 4 which are valid for all L, (or /) with
I < p < +x are improvements of Corollaries 3.1 and 3.2 of [35] which
are proved for L, spaces, where 1 < p < 2. Moreover, the iteration
parameter ¢, in our theorems can be chosen at the beginning of the iteration
process independent of finding a solution of Eq. (16) as is required in the
theorems of [35]. A prototype for our ¢, is ¢, = 1/(n + Dk(1 — k) for all n.
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Notes added in proof. Long after we submitted this paper, Tan and Xu [35] independently
resolved Problems 1 and 2 of Chidume [12] in the affirmative in the more general setting of
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g-

uniformly smooth Banach spaces, g > 1. In such spaces E the

lx + y9 = fxl? + gy, jg0) + dg | yll¢

inequality is known to hold for all x, y € E, where for arbitrary x € E

Jx) = {f* € E*:(x, ) = [Ix[% IF*] = Ixlle '},

and J,(x) = {|x[[*"%(x) for x € E, x # 0, and where d, is a constant depending on ¢ (see
e.g., [35]). Let k € (0, 1) denote the constant of strong accretivity of the operator 7. Tan
and Xu also proved the results which are affirmative answers to Problem 1 of [12].
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