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Let £ be a real Banach space which is both uniformly convex and uniformly
smooth. Let 7: D(T) C E - E be m-accretive, where the domain of T, D(T). is a
proper suhset of E. For any f'€ £, approximation methods are constructed which
converge strongly to a solution of the operator equation x + Tx = f. Explicit error
estimates are obtained. A related result deals with operator equations of the
diSSip‘d!iVE type. © 1995 Academic Press, [ne.

1. INTRODUCTION

Let E be a real Banach space. A mapping T with domain D(T) and range
R(T) in E is called accretive [2] if the inequality

e =¥l = llx =y + 0(Tx = Ty)| (D

holds for each x, y € D(T) and for all t > 0. The operator T is said to be m-
accretive if T is accretive and (I + rT)D(T)) = E for all r > 0, where /
denotes the identity operator on E. T'is called dissipative (respectively m-
dissipative) if (—=T) is accretive (respectively m-accretive). If £ = H, a
Hilbert space, the accretive condition (1) is equivalent to the moncionic-
ity condition for 7 in the sense of Browder [4] and Minty [19]. Accretive
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226 CHIDUME AND OSILIKE

operators were introduced independently in 1967 by Browder [2] and
Kato [16]. Interest is such mappings stems mainly from their firm connec-
tion with the existence theory for nonlinear equations of evolution (see,
e.g., [2]). An early fundamental result in the theory of accretive opera-
tors, due to Browder [2], states that the initial value problem

du
I + Tu =0, u(0) = uy 2)

is solvable when T is locally Lipschitzian and accretive on E. Utilizing the
existence result for (2), Browder [2] further proved that if T is locally
Lipschitzian and accretive, then T is m-accretive. In particular, for any
given f € E, the equation

x+Ix=f 3)

has a solution. In [18], Martin extended these results of Browder by
proving that (2) is solvable if T is continuous and accretive, and utilizing
this result, he proved that if T is continuous and accretive, then T is m-
accretive.

It is well known (see, e.g., [34]) that many physically significant prob-
lems can be modelled in the form of Eq. (2), where T is accretive. Typical
examples of how such evolution equations arise are found in models
involving either the heat. or wave on the Schrodinger equation.

Methods of approximating a solution of Eq. (3) (when it is known to
exist) have been investigated by various authors (e.g., [6-10, 13, 34]). We
introduce two iterative schemes which have been widely used for such
approximations.

(1) The Ishikawa Iteration Process [15, 27] defined as follows: For
K a convex subset of a Banach space E and T a mapping of K into itself,
the sequence {x,},-; in K is defined by

X0 e K (4)
Xn+1 = (1 - an)xn + ay, Tyn’ (5)
Yn = (1 - Bn)xn + ﬁnTxnv n= 01 (6)

where {a,} -0, {Bn}n-o satisfy 0 < «, < 8, < | for all n,

x

limB, =0 and 2 o, B, = >.

n=0
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(b) The Mann Iteration Process {17, 27) which is similar to the
Ishikawa iteration process but with 8, = 0 and different conditions placed
on {a,}.-0. More precisely, with E, K, and x, as in part (a), the Mann
iteration process is defined by

X0 € K (7)

Xpot = (I = cp)xn + cn Tx,, n=0, 8)

where {c,} =0 is a real sequence satisfying co = 1;0 < ¢, < lforalln =1
and 2, ¢, = <. In some applications, the condition Z, ¢, = = is replaced
by 2, call = ca) = 2.

The iteration processes described in (a) and (b) have been studied ex-
tensively by various authors and have been successfully employed to
approximate fixed points of several nonlinear mappings (when these map-
pings are already known to have fixed points) and to approximate solu-
tions of several nonlinear operator equations in Banach spaces (e.g., [6-
10, 13-15, 17, 22, 27]). We remark here that even though the iteration
schemes (a) and (b) are similar, they may exhibit different behaviours for
different classes of nonlinear mappings (see, €.g., [27]).

In several applications, the operator T of Eq. (3) is, in general, not
defined on the whole of E. The domain of T, D(T), is generally a proper
subset of E. In such a situation, the iteration processes (a) and (b) may not
even be well defined. In the case that E = H, a Hilbert space, this
problem has been overcome by introducing the proximity map, Px : H —
K, into the iteration processes (see, e.g., [5, 8]), where K is a closed
convex subset of H and Py is the map which sends each x € H to its
nearest point in K.

It is well known that in H, the map P is nonexpansive (i.c., |Pxx —
Pxyl = ||x — y|l for each x, y € H) and this fact is central in using the
proximity map. Unfortunately, the fact that Pk is nonexpansive in Hilbert
spaces also characterizes Hilbert spaces so that this fact is not available in
general Banach spaces.

It is our purpose in this paper to study methods of approximating a
solution of Eq. (3) in certain Banach spaces E (much more general than
Hilbert spaces) under the natural setting that the domain of 7, D(T) is a
proper subset of E and T maps D(T) into E. Our approximation methods
which are suitable modifications of an iteration method first introduced by
Chidume in [8], will have some resemblance with the Ishikawa and Mann
iteration processes and will reduce to them when the domain of T is
assumed to be the whole of £ or when T is a self mapping of a nonempty
convex subset of E. Thus, our results will extend several known results to
include mappings defined on proper subsets of E and having values in E,
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and will also extend several results from Hilbert spaces to the more gen-
eral Banach spaces to be considered in the sequel.

2. PRELIMINARIES

In the sequel we shall need the following preliminaries and results. Let
E be a Banach space. We shall denote by J the normalized duality map-
ping from E to 2 given by

Jx = {f* € E* £ = el =

where { , ) denotes the generalized duality pairing. If £* is uniformly
convex, then J is single-valued and is uniformly continuous on bounded
sets. We shall denote the single-valued duality mapping by j.

As a consequence of a result of Kato [16], a mapping T with domain
D(T) and range R(T) in E is accretive (see, e.g., [16]) if for each x, y in
D(T), there exists j € J(x — y) such that

(Tx — Ty, j) = 0. 9

For p > 1, following [30], we shall associate the generalized duality map
Jp from E to 2% defined by

Jp(x) = {f* € E* (e, ) = fxfon 1A = el

Observe that J; is the usual normalized duality map, J on E. It is well
known (e.g., {30]) that

J(x) = |xllP"(x),  x#0. (10)

A Banach space E is called smooth if, for every x € E with [ix|| = I,
there exists a unique f* € E* such that || f*|[ = f*(x) = 1 (see, e.g., (11, p.
21].

The modulus of smoothness of E is the function

pe [0, x) — [0, =),
defired by
I
et = sup {3 (b + ol + =2 = Vi v € Bl = 1, b = 7).

The Banach space E is called uniformly smooth (e.g., [31]) if

Ilm pl{(T) —
T T

0,
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and for ¢ > 1, Eis said to be g-uniformiy smooth if there exists a constant
¢ > 0 such that

pe(t) = 79, T € [0, x). (11)
It i1s well known (see, e.g., [30]) that

_{p — uniformly smooth, fl<p=2
Lytor ) is ) )
2 — uniformly smooth, ifp=2.

The Banach space £ is called uniformly convex if given any & > 0, there
exists 8 > O such that forall x, y € Ewith x| < 1, ]y = l,and[x — v = ¢
we have

[#x + v =1 — 8.

It is well known that the L, spaces (1 < p < =) arc uniformly convex.
In [30], the following result which will be needed in the sequel is
proved.

LemMa 1 [30]. Letg > 1 be a real number and E be a smooth Banach
space. Then the following are equivalent.

(i) E is g-uniformly smooth,

(ii) There is a constant ¢ > 0 such that for every x, y € E, the
Sollowing inequality holds:

lx + ¥l < [x]l + g J 00 + ¢ vl (12)

The following result will also be needed in what follows:

THEOREM R1 [26]. Let E be a Banach space which is both uniformliy
convex and uniformly smooth. Let T: D(TYy C E— E be m-accretive and
letJ.= (I + ¢T) . Then, for each x € E the strong limit lim,_, J,(x) exists.
Denote this strong limit by Qx. Then, Q : E— cl(D(T)) is a nonexpansive
retraction of E onto c\D(T)). (Here c(D(T)) denotes the closure of the
domain of T.)

It is well known (see, ¢.g., [1]) that under the hypothesis of Theorem 1,
cl(D(T)) is convex.

Another result which will be useful in our work is the following one. In
[23, p. 89], Reich proved that if £* is uniformly convex, then there exists
a continuous nondecreasing function b : [0, =) — [0, =) such that (0) = 0,
b(ct) = cb(r)forall ¢ = 1, and for all x, y € E,

Ix + [* = [l + 2, j(0) + max{|x]. Hylbdly]. (13)
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Remark 1. Nevanlinna and Reich [21] have shown that for any given
continaous nondecreasing function b with b(0) = 0 sequences {A}n-o
always exist such that (i) 0 < A\, < 1, n = 0; (ii) 2,0 A, = ; and (iil) -
Ab(N\) <o If E = L, (1 << p < =), we can choose any sequence {A,}, o in
N withs =pifl<p=2ands=2ifp = 2.

Finally we shall need the following result.

THEOREM 2 (Dunn [14, p. 41)). Let p, be recursively generated by
Pne1 = (1 - Mn)pn + 0121

withn=1,p,=0, 1, €10, 1], 2,y =%, and 2 -, 02 <. Thenp, =0
Joralin =1, and p,— 0 as n — x.

3. MAIN RESULTS

For the rest of the paper, the Lipschitz constant of the operator T will
be denoted by L; ¢ > 0 is the constant appearing in inequality (12) and for
each x € E, Qx = lim,,¢ J,x. We now prove the following theorems.

3.1. Convergence Theorems for m-Accretive Operators

THEOREM 3. Let E be a real Banach space which is both uniformly
convex and g-uniformly smooth. Let T : D(TY C E— E be a Lipschitz m-
accretive operator with a closed domain D(T). Let {a,} -0 and {B,} n-o be
real sequences satisfying: ()0 = a,, B, < l;n = 0; (i) ima, = 0, lim 8, =
0; (iii) Z -0 a, = . Then for any xo € D(T), the sequence {p,}i-q in E
generated from x, by

Pr = (l - an)xn + an(.f_ TQ,V,:)» n=40 (14)
Yo = (1 = Buxn + Bu(f — Tx,), n=0, (15)
Xy = OPn-ys n=l (16)

converges strongly to the unigue solution of the equation x + Tx = f.

Proof. Since T is m-accretive the equation x + Tx = f has a solution
x* &€ D(T). Set Sx = f — Tx and observe that x* is a fixed point of § and
that S is Lipschitzian with constant L. Moreover, for each x, y € D(T),
(Sx - Xy, j(x — y)) = 0o that (Sx — Sy, j,(x — y)) = 0. Starting with x, €
D(T}, we first compute yo = (I ~ Bo)xo + Bo(f — Txy) in E and then
compute py = (1 — ag)xg + aol f — TQyo) in E. We can now compute x; in
D(T) by x; = Qpo. With x; we compute y, = (1 — B)x; + Bi(f — Txy),
then, p; = (1 — ap)x; + a(f — TQy) and also x; = QP;. Continuing this
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process we generate the sequences {p,}»-¢ and {x,}~¢. Using (12) and
(14)—(16) and the fact that Q is a retraction, we obtain

lpn — x*¢
=1 = a)x, = x*) + o, (SQy, — x|
= (1 = a)¥x, = xH¢ + gadl — ) USQy, — x*, jlx, — x*))
+ caflSQy, — x*|j
(SQyn — x*, jylxn — x*)) (17)
= (SOVs — Sxu, Jy(xn — x*)) + {Sx, — x*, jylx, — x¥))
< (SQyy — Sxn, jy(xa — x) = L@y, — - flxy — x*¢!
< Lllys = xl - flew = x¥l! = LBJlxe = Sl - e — x*{¢~!
= L1 + L)Blx, — x*|J4,

ie.,
(SQy, — x*, jx, — x*)) = L + L)Bullx, — x*|Jv. (18)

Also,
[SQyn — x*|j¢

< LYly, — x*q

= Lq[(l - ,Bn)q”xn - x*”q + an(] - Bn)q‘l<sxn - x*yjq(xn - X*))

+ cBYISx, — x*|4]

= Lq[(] - ,Bn)q + ('Bqu]”X,, - x*”q,

i.e.,

[8Qyn — x*|l¢ = L1 — B)7 + cBiLA|x, — x*{. (19)
Using (18) and (19) in (17) we obtain
[pn — x*l# = [(1 — an)? + gL(1 + L)a,Bu(l = a,)?!
+ cLiaf{(1 = B9 + BALNxy — x*||¢
=[(1 — a)? + gL(1 + L)a,B,(1 — )"

+ cLéad(l + cL9)||x, — x*|4.
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Conditions (ii) imply there exists N, > 0 such that forall n = Ny, a4 ! <
[2qgL4c(1 + Lic)] ', B, = [2¢°L(1 + L)} so that

[pn — ¥« = [(1 — )i+ 5‘(; ap(l = o) + —21; a,.]Hxn — x|
= [1 - o, t Z'}O‘n]Hxn = =1 = a1 ~ Kb, — x*|,

where £k = é € (0, 1).

Thus, for all n = N,

”pn - X*”q =[1-0- k)an]“pnﬂ - x*“q

(20)
= exp(—(1 = ballp, — x|
Iteration of this inequality from n = Ny + | to N vyields
N 3
oy — xfe = exp (1~ 8 S a)lpw, — <=0
J-Ny t1
as N —» = {by condition (iii)), completing the proof. |
Error Estimate. Observe that (20) implies
”Pn - X*H = ”pn*l - X*” foralln = No.
Moreover, since {a,} C (0, 1) and ¢ > 1, (20) also yields
lpw = X =11 = (1 = kel pu-r = x*|9, @n

forall n = Ny. Choose a, = (1 — k) '[1 — (I + n)/(1 + n)4]¥4, n = 0.
Then, clearly lim,_,. «, = 0. Furthermore,

, 1 | - .
a‘gz\]—k)q[]_kn—m], sothatZai,:x(smceq>1).

n 0
Hence 2,y a, = . Substitution of «, in (21) now yields

1+ n
”pn - X*IIH = [m] “pnv—l - x*

q
s



NONLINEAR OPERATOR EQUATIONS 233

(1 + n¥lp, — x*¢ = nélp,y — x¥f¢ = [ p,y — x¥e. (22)
Summing this inequality from n = Ny + 1 to m (m > N,) we obtain
(m + D py — x* = (Ny + Dillpw, = x*¢ = m — Nl pn, — x*J.

i.e.,

m— Ny + (No + 1)
mY

Ip 1 = | |“ s, -

so that p,, — x* as m — =: and clearly.
Hpm - X*H = 0(771 -y rln‘q).

Remark 2. If ¢ = 2, the error estimate of Theorem 3 becomes
llx, — x*| = O(n 12). Recall that L, spaces, p = 2, are 2-uniformly smooth.
Thus, the error estimate of Theorem 3 agrees with the error estimate
obtained in [8] for Hilbert spaces, and agrees with that obtained in [9] for
L, spaces, p = 2. If g = p, the error estimate agrees with that obtained in
[9] for L, spaces, 1 < p < 2. Thus the error estimates obtained in [8], [9]
are special cases of that obtained in Theorem 3.

COROLLARY 1. Let E and T be as in Theorem 3. Let {a,} -y be a real
sequence in (0, 1) satisfying the following conditions: (i) lim,_~. a, = 0; (i1)

n=0 O, = X, .

Then, for any xo € D(T), the sequence {p,}n-o in E generated from xg by

Pn = (1 - an)xn + an(./._ TX,,), n= 07

Xn = Qpnf|~ n=1

converges strongly to the unique solution of the equation x + Tx = f.
Proof. This follows from Theorem 3 with 8, = 0 for each n. |}

Remark 3. If, in Theorem 3, D(T) = E, the use of the projection
operator @ will not be necessary. Moreover, E need not be uniformly
convex. In particular, we have the following theorem.

THEOREM 4. Let E be a g-uniformly smooth Banach space and
T:D(T) = E— E be a Lipschitz accretive operator. Let {a,}. {8} be as in
Theorem 3. Then given any xy € E, the sequence {x,} generated from xq by
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Xnt+y = (1 - an)xn + an(f— T)‘n), n=0
Yn = (1 - Bn)xn + Bn(f— Txn)s n=0,

converges strongly to the unique solution of x + Tx = f.

Proof. A result of Browder [2] shows that T is m-accretive, and so the
equation x + Tx = f has a solution. The results follows as in the proof of
Theorem 3. |

An immediate consequence of Theorem 4 is the following result:

CoroLLARY 2. Let E and T be as in Theorem 4. Let {a,} - be a real-
sequence satisfying: (i) 0 = a, < 1, (i) lim,.. a, = 0; (iii) Z,-p a, = =.
Then for any xo € E, the sequence {x,} generated from x, by
Xni1 = (1 — a)x, + a,(f — Tx,), n = 0 converges strongly to the unique
solution of the equation x + Tx = f.

Proof. This is obvious from Theorem 4. |

Remark 4. If the operator T is assumed to have a hounded range the
following convergence theorem is proved in real Banach spaces which are
both uniformly convex and uniformly smooth.

THEOREM 5. Let E be a real Banach space which is both uniformly
convex and uniformly smooth. Let T : D(T) C E— E be an m-accretive
operator with closed domain D(T), and bounded range R(T). Let {c,} ;-
in (0, 1) be a real sequence satsifying: (1) lm,.. ¢, = 0;
(i) 2, —g call = ¢4) = 0, (1i1) Z—g cabley) < . Then for any xo € D(T), the
sequence {p,tn-0in E generated from xq by p, = (1 — ¢)x, + ¢ (f — Tx,),
n=0;x,= Qp,-r, n =1 converges strongly to the unique solution of the
equation x + Tx = f.

Proof. The existence of a solution follows from the m-accretivity of
the operator 7. Let x* be a solution. Using inequality (13) we obtain
lpn ~ x*|?

= (1 — cdxn — x*) + c,(Sx, — xH)|°,
where Sx = f — Tx for each x € D(T)
2+ 2001 ~ ¢, X8x, — x*, j(x, — x*))

+ max{(1 = c,)x, — x*, 1} |Sx. — x¥b(c)Sx, — x*|)
= (1 = ¢fx. — x*F + max{(1 — ¢lx, — x*[|. 1}c,[Sx,

— x¥max{|[Sx, — x*, 1}b(c,)

x, — x** + Mc,blc,)max{(1 — ¢,)x, — x*, 1}

= (l - ('n)Z“xn - X*{

= (1 = ¢,)?
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for some constant M > 0. We now consider the following two cases:
Case 1. We consider the set of all integers n = 0 for which
max{(l1 — ¢,)|x, — x*, 1} = 1.
In this case we obtain
”pn - X*Hz = (1 - ('n)2||X" - x*“z + M(‘,,b((',,).
Cuase 2. We consider the set of all integers n = 0 for which
max{(l1 — c)llx, = x*||, 1} = (1 — ¢,)llx, — x*.
In this case we obtain
”pn - X*“2 = [(l - ("n)z + M('n(l - (,',,)Zb((',,)]“X,, - X*Hz-
Thus, for all integers n = 0 we have
”pn - X*Hz = [(] - (.”)2 + M('n(l - Cn)b(cn)]”xn - X*HZ + M('nb(('n)
= [(1 = ¢o)? + Mc,(1 = e)ble)l|pa-y — x*P + Me,b(c,)
=[1 — 2¢, + i + Mc (1 = c )b ) pr-1 — x|
+ Mc,b(c,)

= [l —{('n(] - Cn) + Cnll - M(l - (.n)b(('n)}]”pnfl - X*”Z
+ Mc,b(c,).

Condition (i) and the continuity of (b) imply there exists some integer
Ny > 0 such that for all n > N,

Ml = c,)b(c,) € (0, 1) and ca(l = ¢p)
+ ¢ [1 = M1 — ¢,)b(c)] € (0, 1).

Let w, = ¢, (1 — ¢,) + ¢, [1 — M(1 — ¢,)b(c,)], n = Ny. From the above
calculations we obtain

o = x*P = (1 = wllpa-r — x¥?
+ MC,,b(('n). n = N().

Set p, = ||pa-1 — x*|% 02 = Mc,b(c,) so that the last inequality reduces to

Pl = U~ pp, + ol. (23)
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Conditions (ii) and (iii) imply = u, = %, 2 o3 < . Inequality (23) and a
simple induction now yield that for all n = 1,

0=p, = Ta,, (24)
where o, = 0 is recursively generated by
Opty = (1 - ,U/n)an + U';ll» o) = 1, (25)

and 7? = max{p,, 1}. It now follows from Theorem 2 that a, — 0 as n —
«, so that from (24) we conclude that p, — 0 as n — >, completing the
proof of the theorem. |

THEOREM 6. Let E be a real uniformly smooth Banach space. Let
T: D(T) = E— E be a contintious accretive operator with bounded range
R(T) C E. Let {¢u}n-o be as in Theorem 5. Then, for any x4 € E, the
sequerce {x,} -y generdated from xq by

Xpo1 = (1 — x,0x, + ¢c,(f ~ Tx,), n=0,

converges strongly to the unique solution of the equation x + Tx = f.
Proof. The existence of a solution follows from Martin {18]. Follow-
ing the technique of the proof of Theorem 5 we obtain
“xrwl - .\.’*“2 = “ - {Cn(l - Cn)
+ (,',,[1 - M(l - ('n(b(cn)]}”xu - x*“l + M('nb(('n)q
and the rest of the argument follows exactly as in the proof of Theorem 3
to yield

Pu+l = (l - ll-n)pn + (T;l' Where P = H"‘H'| - -"*Hz

The result follows as in Theorem 5. |

3.2. Convergence Theorems for Dissipative Operators

In this section we turn our attention to convergence theorems for dissi-
pative operators. We shall be interested in the approximation of a solution
of the equation x — ATx = f, where T : D(T) C E— F is m-dissipative and
\ is a real positive constant. In particular, we prove the following theo-
rems.

THEOREM 7. Let £ be a real Banach space which is both uniformly
convex and q-uniformly smooth. Let T : D(T) C E— E be a Lipschitz m-
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dissipative operator with a closed domain D(T). Let {a,} ;-0 and {B,,} 10 be
real sequences satisfyving the following conditions: (1) 0 = a,,, 8, < I;
(i) imy.. @, = 0, lim B, = 0: (iii) 2,y o, = .

Then for any xq € D(T), the sequence {p,}.-qin E generated from xy by

Pn = (l - an)xn + an(.f+ )\TQ.VH), n=0
—v" = (1 - B")X" + Bﬂ(f+ A7’:’\01)’ = 07

Xp = Opn-1, n=1

converges strongly to the unique solution of the equation x — ATx =
fiA>0.

Proof. The existence of a solution follows from the m-dissipativity of
T. Furthermore (—AT) is Lipschitz and m-accretive. The result now fol-
lows from Theorem 3. |

CoOROLLARY 3. Let E and T be as in Theorem 7. Let {a,} be a real
sequence in (0, 1) satisfying the following conditions: (1) lim,_.. a, = 0; (ii)
::0 a, = %,

Then, for any xy € D(T), the sequence { p,}n-oin E generated from xq by

Pn = (1 - an)xn + an(f+ ATX"), n=0

Xp = Qpn‘lw n= 1

converges sirongly to the unique solution of the equation x — \Tx = f.
Proof. This is obvious. Set 8, = 0 for all n in Theorem 7. |

Remark 5. Following the pattern of Theorem 7 and Corollary 3, all the
results of Subsection 3.1 can be restated in terms of dissipative operators
for the equation x — ATx = f.

For example, Theorem 4 and Corollary 2 can be stated for dissipative
operators as follows:

THEOREM 8. Let E be ua g-uniformly smooth Banach space and T :
D(T) = E— E be a Lipschitz dissipative operator. Let {o,}, {B8,} be as in
Theorem 4. Then given any xy € E, the sequence {x,} generated from xq by

Xpr| = (] - an)xn + an(j. + )\T)’"), nh= 0.
Yo = (l - Bn)xn + Bn(f‘+ }\Txn)s n=0

converges strongly to the unique solution of x — ATx = f, A > 0.
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COROLLARY 4. Let E and T be as in Theorem 8. Let {a,}-o be a real
sequerce satisfying the following conditions: (i) 0 = o, < 1, (ii) lim o, = 0,
(iil) Z,—p a, = . Then for any xy € E, the sequence {x,} - generated from
xo by xp0 = (1 — a)x, + a,(f + ATx,). n = 0 converges strongly to the
unique solution of x — \Tx = f.
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