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1. INTRODUCTION

Let X be a real normed linear space with dual X*. We denote by J the

normalized duality mapping from X to 2¥” defined by

To={f* e X*:(x, f*) = x> = I £*11},

where ¢ -, - ) denotes the generalized duality pairing. It is well known that
if X* is strictly convex then J is single-valued and if X* is uniformly

convex then J is uniformly continuous on bounded subsets of X.
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An operator A with domain D(A) and range R(A) in X is called
accretive if, for each x,y € D(A), there exists j(x —y) € J(x — y) such
that

(Ax — Ay, j(x —y)) = 0. (1)

Furthermore, A is called strongly accretive if, for each x, y € D(A), there
exist j(x —y) € J(x —y) and a real number k£ > 0 such that

(Ax — Ay, j(x —y)) = kllx — ylI>. (2)

The operator A is said to be ¢-strongly accretive if for each x,y € D(A)
there exist j(x —y) € J(x — y) and a strictly increasing function ¢: [0, «)
=MN"> RN~ with $(0) = 0 such that

(Ax — Ay, j(x —y)> = ¢(llx = yI)llx = yll. (3)

The operator A is called m-accretive if it is accretive and (I + r4)(D(A))
=X for all »r > 0, where I denotes the identity operator on X. Let
N(A) :={u € D(A): Au = 0} # &. If the inequalities (1), (2), and (3)
hold for all x € D(A) and y € N(A) then A is called quasi-accretive,
strongly quasi-accretive, and ¢-strongly quasi-accretive, respectively.

The accretive operators were introduced independently by Browder [2]
and Kato [29] in 1967. An early fundamental result in the theory of
accretive operators, due to Browder, states that the initial value problem

du
— +Au=0
dt (4)

u(0) = u,

is solvable if A is locally Lipschitzian and accretive. It is well known that
many physically significant problems can be modeled in the form (4).
Typical examples of how such evolution equations arise are found in
models involving the heat, the wave, or the Schrodinger equation (see, e.g.,
[46]). If u is independent of ¢, then Au = 0 and the solution of this
equation corresponds to the equilibrium points of the system (4). Conse-
guently, considerable research efforts have been devoted to finding con-
structive methods for approximating solutions of the equation

Au =0, (5)

where A is an accretive-type operator on appropriate Banach spaces (see,
e.g., [5, 7, 20, 22-27, 30, 3239, 41, 42, 44, 45)).

Closely related to the class of accretive maps is the class of pseudocon-
tractive operators. An operator T with domain D(T) and range R(T) in X
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is called strongly pseudocontractive if, for all x,y € D(T), there exist
j(x —y) € J(x —y) and a constant ¢ > 1 such that

(Tx — Ty, j(x —y)> <t Yx —yll. (6)

If t = 1in Eq. (6), then T is called pseudocontractive. The map T is called
¢-strongly pseudocontractive if for all x,y € D(TO there exist j(x —y) €
J(x —y) and a strictly increasing function ¢: N*— R* with ¢(0) =0
such that

(Tx = Ty, j(x —y)) < llx = ylI> = ¢(llx = yl)llx = yl. (7)

T is called ¢-hemicontractive if the relation (7) holds for all x € D(T') and
y € NI — T). It follows from inequalities (3) and (7) that T is ¢-strongly
pseudocontractive if and only if (I — T) is ¢-strongly accretive, so that the
mapping theory for accretive operators is intimately connected with the
fixed point theory for pseudocontractions.

Two well-known iterative methods, the Mann iteration method (see, e.g.,
[31] and the Ishikawa iteration method (see, e.g., [28, 40]), have successfully
been employed for self-maps (see, e.g., [25, 27, 34, 35, 37, 45)]). If D(A) is a
proper subset of X (and this is the case in several applications) both the
Mann and Ishikawa iteration methods may not be well defined. Under this
situation, for Hilbert spaces, this problem has been overcome by the
introduction of the proximity map in the recursion formulas (see, e.g., [3,
6]). The advantage of this is that if K is a nonempty closed convex subset
of a Hilbert space H and Py: H — K is the proximity map of H onto K,
then Py is nonexpansive (i.e., ||[Pyx — Peyll < llx — yll for x, y € H). This
fact actually characterizes Hilbert spaces and consequently is not available
in more general Banach spaces. In this connection, the following result
which holds in certain Banach spaces is of interest.

LEMMA 1 (Reich [38]). Let X be a Banach space which is both uniformly
convex and uniformly smooth. Let A: D(A) € X — X be m-accretive and let
J. = (I + rA)" . Then for x € X the strong limit lim__ , J (x) exists. Denote
this strong limit by QOx. Then, Q: X — cl(D(A)) is a nonexpansive retraction
of X onto cl(D(A)), where cl(D(A)) represents the closure of the domain of
A.

It is known that under the hypothesis of Lemma 1, cl(D(A)) is convex
(see, e.g., [1]).

In the rest of the paper Q will refer to the operator defined in this
lemma.

In connection with the iterative approximation of the solution of Eqg. (5),
the following result for self-maps was recently proved.
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THEOREM XR (Xu and Roach [45]). Let X be a uniformly smooth
Banach space and let A: D(A) =X — X be a quasi-accretive bounded
operator such that if for any x € D(A), p € N(A), and any j(x — p) € J(x
— p) the equality { Ax, j(x — p)) = 0 holds if and only if Ax = Ap =0,
then, for any initial value x, € D(A), there is a positive real constant T(x,)
such that the sequence {x,} generated from {x,} in D(A) by x,,, =x, —
t,Ax,, n > 0, wheret, € (0,%), t, =, t, > 0 asn — o, witht, < T(x,)
for any n, converges strongly to a solution x* of the equation Ax = 0 if and
only if there is a strictly increasing function ¢: R* - R™*, $¢(0) = 0, such that

(Ax, — Ax*, j(x, —x*)) = ¢(llx, — x*[)(Ilx, — x*])).

The main ingredient in the proof of Theorem XR is the following
inequality which holds in real uniformly smooth Banach spaces X. For
each x,y € X,

C
lx + yll < lxl” + 2¢y, j(x)> + D maX{IIxII + iy, E}px(llyll),

where D and ¢ are positive constants (see [44]). Other recent theorems
related to Theorem XR can be found, for example, in [11, 25, 32, 14]. More
recently, Morales and one of the authors [32] considered the following
inequality due to Reich [39]. Let X be real uniformly smooth space. For
each x, y € X, the following inequality holds:

llx + yll < 1xll® + 2¢x, j(y)) + max{llxll, Blyllb(lyll), (8)

where b is a function which depends on the geometry of X (see, e.g., [39].
They proved the following theorem.

THEOREM MC (Morales and Chidume [32]). Let X be a uniformly
smooth Banach space, let b be the function appearing in (8), and let A:
X — X be a bounded demicontinuous mapping, which is also ¢-strongly
accretive on X. Let z € X and let x, be an arbitrary initial value in X for
which the liminf,_, , ¢(r) > | A(x)I. Then the approximating scheme x,, . ,
=X, — cn(Axn —2z),n=0,1,2,... converges strongly to the unique solution
of the equation Ax =z, provided that the sequence {c,} of positive real
numbers satisfies the following: (i) {c,} is bounded above by some constant r;

(ii) Xc,, = o; and (iii) Xc,b(c,) < .

The condition Xc,b(c,) < % in Theorem MC is, in general, not conve-
nient to verify in applications. Nevanlinna and Reich [33], however, have
shown that, for any given continuous nondecreasing function b with
b(0) = 0, sequences {A,} always exist such that (i) 0 < A, <1, n > 0; (ii)
XA, = oo (i) ¥A,b(),) <. If X =L (1<p <o), we can choose any
sequence {A,} in *\I!Y, withs=pifl<p<2ands=2if p>2
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In 1995, Liu [30] introduced what he called Ishikawa and Mann iteration
processes “with errors” for nonlinear strongly accretive mappings as fol-
lows:

(@) For K a nonempty subset of a real Banach space X and T:
K — X, the sequence {x,} defined by x, € K,

Xny1 = (1 - an)xn + anTyn + Uy, Yn = (1 - Bn)xn + BnTxn + Unps
n >0,

where (i) {a,} and {B,} are some real sequences in (0,1) satisfying
appropriate conditions, (i) Xllu,|l < «, Xllv,ll < o, is called the Ishikawa
iteration process with errors.

(b) With K, X, and T as in part (a) the sequence {x,} defined by
x, €K,

X,01=01—-a)x, +oa1TIx, +u,, n >0,

where {«,} and {u,} satisfy conditions as in part (a), is called the Mann
iteration process with errors.

While it is well known that consideration of errors in iterative processes
is an important aspect of the theory, it is also clear that the iteration
process with errors introduced in (a) and (b) are unsatisfactory. The
conditions Yllu, |l < e, Xllv,ll < o imply, in particular, that the errors tend
to zero. This is incompatible with the randomness of the occurrence of
errors. Recently, Yuguang Xu [42] introduced the following satisfactory
definitions.

(A) Let K be a nonempty convex subset of X and let T: K - K be
a mapping. For any given x, € K, the sequence {x,} defined iteratively by

X,y =a,x, +b1y, +c,u,, y, =d,x, +bTx, +cuv,, n>0,
(9)

where {a,},{b,},{c,},{a,}, {b.},{c,} are sequences in (0, 1) such that a, + b,
+c¢,=1=d,+ b, +c, and {u,},{v,} are bounded sequences in K for
all integers n > 0, is called the Ishikawa iteration sequence with errors.

(B) If, with the same notation and definitions as in (A), b, = ¢, =0
for all integers n > 0, then the sequence {x,} now defined by x, € K,
X, 1=a,x,+bTx, +c,u, n=>0,is called the Mann iteration sequence
with errors.

nt

It is our purpose in this paper to construct an iterative process with
errors in the sense of (A) and (B) which converges strongly to the solution
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of Eq. (5) where A is an accretive-type map defined on proper subsets of
appropriate Banach spaces. Our theorems improve, generalize, and unify
most of the results that have appeared for this large class of operators. In
particular, Theorem XR, Theorem MC, Theorems 3 and 4 of [14], and the
theorems of [11] and [25] are special cases of our theorems. Moreover, our
method of proof, which is of independent interest, is much simpler than
the methods used in [45], [25], or [11]. Furthermore, our theorems show
also, in particular, that in Theorem MC the condition Y¢,b(c,) < %, which
depends explicitly on the geometry of the underlying Banach space, is not
needed.

2. PRELIMINARIES

In the rest of the paper we shall need the following preliminaries and
lemma.

A Banach space X is called smooth if, for every x € X with ||x|| = 1,
there exists a unique j € X* such that [|j]| = [|j(x)|l = 1 (see, e.g., [21]).
The modulus of smoothness of X is the function py: [0,0) — [0, )
defined by

p = sup{3(llx + yll + llx = yll) = L:llxll = 1, Iyl = 7}.

A Banach space X is called uniformly smooth (see, e.g., [44]) if
lim,_, px(7)/7= 0, and, for ¢ > 1, X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that

px(7) <c7i, T €[0,%).
It is well known (see, e.g., [43]) that

L, (orl)is g-un_iformly smooth _if 1<p<2
-uniformly smooth if p > 2.

The Banach space X is called uniformly convex if, given any e > 0, there

exists & > 0 such that for all x,y € X with |[x]| < 1, llyll < 1, and [lx — yl|

> € we have [3(x + y)ll <1 — 8. It is well known that L, spaces (1 <p

< =) are uniformly convex. Consequently, L, spaces (1 < p < =) are both

uniformly smooth and uniformly convex.

Condition (1). A accretive operator A will be said to justify Condition
(D if N(A) #= I and for any Qy, € D(A), p € N(A), and any j(Qy, — p)
e J(Qy, — p) the equality {AQy,, j(Qy, — p)> = 0 holds if and only if
AQy, = Ap = 0, where {y,} is the sequence defined in (9).
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Let X be a real Banach space. The subdifferential of a function f on X
is a map Jf: X — 2% defined by

f(x) ={x*eX* :f(y) =2f(x) +{y —x,x')forall y € X}.
It is well known that Jx is the subdifferential of the functional %/lx[|>. An
immediate consequence of this is the following lemma.

LEMMA 2. Let X be a real Banach space. Then there exists j(x + y) € J(x
+ y) such that

lx + ylI* < Ixli® + 2¢y, j(x +y)) forallx,y € X.

We shall make use of this lemma in what follows.

3. MAIN RESULTS
Now, we prove the following theorems.

3.1. Non-Self-Maps

THEOREM 1. Let X be a uniformly smooth and uniformly convex real
Banach space. Let A: D(A) € X = X be a bounded m-accretive operator
with closed domain D(A) and let A satisfy Condition (1). Then there exists a
constant d, > 0 such that for bounded sequences {u,},{v,} in D(A) and real
sequences {a,},{b,},{c,},{d },{b.},{c)} satisfying the following conditions:

@ a,+b,+c,=1=d,+b,+c,, n=0,

(i) 0<b,+c,<d,,0<b,+c,<dy, n=>0,

(i) Yi_,b, =, ¢, <c, < a? where a, =b, +c,, n >0,
Gv) lim, . b, =lim, . b =lim,,.c, =lim, .c, =0,

the sequence {x,} generated from arbitrary x, vy, uy in D(A) by

xn+l = Qpn'
p,=a,x, +b,(I—A)y, +c,u,. (10)
y,=d,x, +bx, +cu,, n >0,

converges strongly to the unique solution x* of the equation Au = 0 if and
only if there exists a strictly increasing and surjective function : [0, ) = R*
— N~ with $(0) = 0 such that

(Ay, —Ax*, j(y, —x*)) = ¢(lly, —x*Dly, —x*II. (11)
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Proof. Set «, ==b, + ¢, and B, = b, + ¢/,. Then (10) reduces to

1 = Qpn
Py =x, — a, Ay, — U, (12)

yﬂ =xn - C/n(xn - Un)’

where U, = c,(y, — Ay, — u,) + a,c,(x, —v,) and conditions (ii) and
(iii) reduce to 0 < o, <dy, 0 < B, <dy, X _pa, =, and lim, _, «a, =
lim,_.B,=0.

Necessity. Let {x,} converge strongly to the unique solution x* of
Au = 0. Observe that, since the domain D(A) of A is convex, y, € D(A)
and Qy, =y, forall n > 0. Since {v,} is bounded and lim ¢/, = 0, it follows
that y, - x* as n - ». Let D = suplly, —x*|| <. If D=0, then
y, =x* for all » >0 and (11) holds trivially. If D > 0, then for any
t € (0,D), we define the set C, as follows:

C,={neN:ly, —x*l =1},

where N is the set of all nonnegative integers. Since y, — x*, for any
t € (0, D), there exists a positive integer n, such that |ly, — x*|| < ¢ for all
n > n,. This implies that, for all 7 € (0, D), C, is a finite subset of N and
C,cC, forallt,,¢, € (0, D), t;, > t,. Define

h(r) = min LA _f;*’_jifﬁ_x*» e (D)} (13)

Clearly, A(t) is nonnegative and nondecreasing. We now prove that A(¢) >
0 for any ¢ € (0, D). Assume this is not the case. Then there exists
t, € (0, D) such that A(zy) = 0. Hence by (13) there exists no €C,*9D
such that ( Ay, ,](yn0 —x*))/llyn —x*|=0 and Ily,, —x*|| > to > 0.
Now since the operator A satisfies Condition (1), we therefore have
Ay, = Ax* = 0. That is to say, y, is a solution of the equation Au = 0.
But this contradicts the fact that the solution is unique. Thus A(z) > 0 for
any ¢ € (0, D).
Define the function ¢: [0, %) — [0, ) as follows:

0, if =0,
w(t) = (11 h(t), if t € (0, D),
(1+tD)S“Eh(S)' if1 €[D, ).
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Then, ¢ is a strictly increasing and surjective function with (0) = 0 and
satisfies (11) (since (¢) < h(z) for all ¢t € (0, D)). This completes the
proof of the “necessity.”

Sufficiency. Case (i). If Ay, =0 for all n > 0, by the convexity of
D(A) it follows from (10) that the sequences {p,} and {y,} are in D(A).
Consequently, the map Q reduces to the identity map of D(A) and (12)
reduces to

Xpp1 =X, = C( Yy — 1,) = a0 (x, —v,)
Yo =X, = C(X, = 0,)
and using (11) we get that
ly, —x*l < ¢y~ (llAy,ll) = ¥7*(0) =0,

i.e., y, =x* for all n. Moreover,

1
llx,ll < m{||X*|| + cllo,ll}
< —{Ix*|| + a*m},
1—a) {Ilx*l }

where m = max{sup{llv,I}, supfllu,[}} and a* <1 is a constant (which
exists by (iv)) such that, for some positive integer m,, ¢, < a* for all
n > m,. So {x,} is bounded. Furthermore, using (12), we obtain (since
y, = x* for all n) for some constant D > 0 that

0 < llx, —x*Il < lly, = x*I + ¢, llx, — v,ll
<c(lxl+lloll) <Dc, >0 asn — <.

Hence {x,} converges to x* € N(A). To show that x* is unique, let
y* € N(A) be such that y* # x*. Then proceeding as in the above we get
that x, — y™*, which contradicts the fact that x, — x™*. Thus the solution is
unique.

Case (ii). Suppose there exists n such that Ay, # 0. Without loss of
generality we may assume that Ay, # 0. Then from (11) and (12) we get
llyo — x*II < 4~ (| Ay,lD and

llxo = x*Il < llxg = yoll + llyg — x*II < eg(llxoll + m) + ¢ (Il Ay,ll)

< llxoll + m + ¢ (Il Ay,ll).
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Now set

ag = llxoll + m + ¢ (Il Ay,l),

w530
M(xp) = sup{llAull: llu — xoll < 2(aq + r(a,))},

R(xy) = 4{M(x0) +r(ag) +ag+m+ ||x0||}.

Since j is uniformly continuous on bounded subsets of X, for e:=
(ay/2)ay,/4M(x,) there exists a 6 > 0 such that, for x, y € B(0, 2(a, +
r(ag)), llx — yll < & implies [[j(x) — j(y)ll < e. Set

a r(ap)
2R(xq) " R(xo)(1 + aq + 2r(ay)) " 3R(x,) |

(14)

dy = min

Claim 1. {x,} is bounded.

Suppose the sequence {x,} is not bounded. Let n, be the first natural
number such that

||xn0 —x*[| > a,. Then ||xn0_1 —x*|| < ag. (15)

This implies that IIJC,%,l —xll < ||xno,1 —x*|| + Ix* — x,ll < 2a,, which
gives that [[Ax, _ll < M(xy) and [lx, _,ll < 2a, + [[x,ll and from (12),
(14), and (15) we obtain that

Vg1 — 2% < lx, oy = x* 1+ ¢, y(llx,, ol + m)
<ay+dy(2a, + lIxoll + m) < ay + r(ay)
1Y,,-1 = Xoll < Mly,,—1 = 2™+ lx* — xoll < 2a, + r(ay).
Consequently, [| Ay, _ill < M(xy) and [y, _,Il < 2a, + r(ag) + [lx,ll
Moreover, using (12) and condition (iii),
llx,, —x*ll < llx, 4 — x*|l
+ a, o{llAy, ol + y, ol + 1Ay, ol + e,
+llx, oL+ llo, oI}
<ay+ @, {2M(xy) + 4ay + r(ay) + 2llx,ll + 2m}

<ay+dyR(xy) <ay+r(ag)



58 CHIDUME ET AL.

and hence

lx,, = Xoll < llx,, — x*I + [lx* — xoll < 2a4 + r(ay),

no

which implies || Ax, || < M(xy) and [lx, || < 2a, + r(ag) + llxll
Furthermore,

Iy,, = x*I < llx,, = x* Il + ¢, (llx, ]l + m)
<aqy+r(ay) +dyR(xy) <ay+ 2r(ay)
||yn0 — xll < ||y,,O = x*[| + [x* — xoll < 2(ay + r(ay)).

Consequently || Ay, [l < M(xy) and lly, Il < 2(ay + r(ay)) + llx,|l.
Now, from (12), (11), Lemma 2, and the above relations we obtain that

2 2 2
1%,,+1 — x*II° < lIp,, — x*I = llx,, — x* — a, Ay, — U,ll

2
<llx,, —x*Il

= 2a,{ Ay, = A%, (P, = X*) = j(Yay — %))
= 2a,{ Ay, — A", j(y,, —x*))
= XU, j(Pay — %))
< Moy, = 2*1% + 20, 1Ay, 1| J( g = %) = J(30 =) |
— 20, 0 (lly,, = ¥ N)lly,, — x*1 + 2T, 1l p,,, = **.
(16)
Observe that from (14), condition (ii), and (12)

1y,, = x*I = llx,, = x*Il = lly,, — x|l

a

o = (e (I, I+ ) = 00— (2] = (3

10, < ¢, (Ily, Il + 14y, | + m) + a, ¢, (I1x, ]| + m)

\%

<c,f4ay + 3r(ag) + M(xy) + 2llx,ll + 2m}
< a’ R(x,)  (sincec, <c, < a?)
Ip,, — x*Il <llx,, —x*Il + a, 4y, I + U, |

<a,+r(ay) + anO(M(xO) +r(ay)) <ay + 2r(ay).
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Thus (16), (14), and the above estimates give that

||xn0+1 _x*HZ = ”xno _x*”Z + ZanoM(xO)”j(pno _x*) _j(yno —X*)”

o\ [ %o
+ 201,120R(xo)[a0 + 2r(ay)] - 2anodl(?)(?)
<llx,, = x*I° + 2a, M(x) || j( o, = x*) = i(yn, — x|
ay
+2a,r(ag) — a, (?)ao. (17)

Using condition (ii) and noting that
1Dn, = Y ll < llx,, = ¥l + @, 1Ay, | + 11U, |l
< ¢, (llx, I+ m) + a,(M(x,) +7r(a)) <8/3+8/3<8

and that (p, —x*),(y, —x*) € B(0,2(a, + r(ay)), we get by the uni-
form continuity of j on bounded subsets of X that
¥(ag/2)a,

i P, =) = j(ya, — )| < M (xy)

Substituting this in (17) we get, using the definition of r(a,) from (), that

* (12 * (12 g\ 4o a
||xn0+1—x || sllxnu—x || +Olnoll/ ? ? —|—2an0r(a0) — @y ? a,
B | - -0 _ %2
<, -1 - Ja,, (2 )aosllxno |

and hence |x, ,; —x*[l <lx, — x*|l. Consequently,
2,01 = Xoll < llx, 1 = x* I + [lxg — x*[l < 244 + 7 (ay)

and
||Axn0+1|| S M(xo).

To complete the proof of Claim 1, let p, = |lx, — x*[. If we assume
that p, ., > aq, then, by the previous argument, we get p, ., < p, ;. On
the other hand, if p, ,, < a,, then either p, < a, for all n > n, + 1, in
which case the proof is complete, or there exists a positive integer j such
that p, > a, while p;,_; < a,. In the latter case, if [|Ax;_,ll < M(x,) and
Ay, Il < M(x,) we return to the previous argument. To this end, note
that p;_, < a, implies that [lx;_, — xoll < llx;_; — x*|l + [lx, — x*[l < 24,
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and so || Ax;_ [l < M(x,). Moreover,

“ij1 —x*|| =||(xj—1 —x*) + C}—l(xj—l - Uj—l)”

<oy = ¥+ ¢y (Il -l + oy -4l

<aq +r(ay) since ¢;_; < d,.
Hence ||y]._l — x|l < ||yj_1 —x*|| + lxg — x*|| < 2a, + r(ay), so that
Ay, Il < M(x,). Thus, the sequence {x,} is bounded. Consequently, the
sequences {y,}, {p,}, and {Ay,} are bounded. This completes the proof of
Claim 1.

Now, observe that, by condition (iii) (¢, <c, < a?2), and using the

boundedness established above there exists a constant M, > 0 such that
G- p,, = x*I1 < {e,,(Ily, Il + N Ay, Il + m) + a,c, (x| + m)}lIp, — x*]l

<c,M; < afM,.
By (11), (12), and Lemma 2 together with the above estimates, we get that

16,00 = %417 < Ulp, =¥ 12 =[x, = %) = @,(Ay, —Ax*) = U, [
<llx, — x*|?
= 2a,( Ay, — Ax*, j(p, — x*) = j(y, — x*))
= 2o Ay, — Ax*, j(y, —x*)) = XU, j(p, —x*))
< llx, =12 + 2,14y, i (py = %) = (3, = **) ||
=20, (lly, — x* Dy, —x*II + 21T, I p, — x*l

<llx, — x*|1°
+ 20,14y, (py = ) = j(yy =¥ || + @, M)
= 2a,y(lly, —x*)lly, — x*I. (18)

Moreover, since, from (12),

liminflly, —x*[ = liminf(lly, — x*I| = ¢,llx, — v,ll)
n— o

n— o
< liminfllx, — x*[| = liminf(llx, — x*[ = c,llx, — v,ll)
n—x n— o
< liminflly, — x*|I,

n— o
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we have

liminflly, — x*Il = liminf|lx, — x*]|.

n— o n—®
Let liminf, __lly, — x*[| = & (say) > 0.
Claim 2. 6=0.

Suppose not. Then there exists an integer N, > 0 such that

' L8 (B
W (lly, = x*lly, —x*I = E‘p(E)

for all n > N,. Since {Ay,},{p, — x*},{y, — x*} are bounded and [|(p, —
x*) — (y, —x*)|l > 0as n — , by the uniform continuity of j on bounded
subsets of X, there exists a positive integer N, such that

, . 5 (&
1Ay j(py — x*) = j(y, —x*)| < gw(g)

for n > N, and also, by (iv), there exists a positive integer N; > 0 such
that

o (0o
a, M, < glﬂ(;) forall n > N;.

So, for all n > N == max{N;, N,, N,}, inequality (18) implies that

o 1)
lx,,, —x* 17 <llx, —x*[* — an§¢(§).

This implies that lim,, _, llx, — x*|| exists. Hence we have that, for N =
max{N,, N,, N,},

15} o) =

which contradicts condition (iii) that ¥’_,«, = «. This contradiction
implies that 6 = 0.

Claim 3. {x,} converges to x* € N(A).

Since liminf, _ |lx, — x*|| = 0, there exists a subsequence {||x, " — x*|I}
of {/lx, —x*|}} such that Ilmj_mllx —x*|| = 0. It follows that, given
€ > 0, there exists a positive integer ]0 such that |lx, n X *|| < e for all
J=zjo (nj=mn;) Set A, =2(lA4y,llj(p, —x*) —j(y, =N + «,M,)
and observe that A, — 0 as n — «. Then there exists a positive integer N,
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such that A, < $y(5), o, < €/8(M, + M; + M,), for all n > N, where
M, = sup{IIAynll n > 0}, M3 = supfllx, — v,ll:n > 0} and M, is a con-
stant such that

N0l < c,(Ilyll + 1Ay, |l + m) + e, c,(lIx,ll + m) < c,M, < a/M,.

Aslim;_ . n; = =, we can choose j, such that N, > max{n;, N,} so that

s

lx, —x*I<e, and
I

€ €
A< ==, < , foralln > N. .
" 4"’(2) =M, + M, + M,) =4,

We prove that |x, " —x*[| < e for all positive integers p > 1. We
proceed by induction on p. For p = 1, we prove that ||x ™ —x*[| < e.
Suppose

||xn/_*+1 —x*|| = €. (19)
Then, using (12) we get that
ok — ¥ — —
e, —x*l=lx,  —x*I-a, Ay, I|=IU, |
) € € 3
ze—a, My —a, My > €~ 3 8 1€
and
* * ’ 2 €
”y”n = Hx"n x| c”j*”x"f* U"/*” = 4€ a”nM3 > 2"

Since y s strictly increasing, we have that ¢(lly, —x*I) >
equalities (18) and (19) give that

V
<
~
Nin

3

IA
m

P <] < e+ a, ~w -
e <lx, , —x <e€ +ani*zl,[f > —ani*ed/ >

a contradiction, so that ||x ™ — x*|| < e. Now, assume that, for some
Po> 1, lx, . —x*|| < e We prove that ||Xn . _—X*|l < e. Assume
for contradiction that ||x —x*|| = e Then from (12) we obtain

Mj, +po+1
% k| _
Hx"/; +po x H = ”x”/'* +po+l x ” a”/‘*wo”Ay"jwpo” “U”/,wo“
>€e— Mz—a,f M42%6,

M, +pg s +Po
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and
— ¥ > k| — _
”y"f* +po X ” - ||x”u+1'o x ” C”/ﬁpo”x”/wl’o U”/ﬁpo”
3 2
= —€— qa, M3 > —.
4 s +po 2

Hence ¢(lly,  —x*ID > (), and so inequality (18) gives

€

€ (€
2 * 2 2
- -yl =] - —| <
x*| < e +anj*+p04(j/(2) anjﬂpoelp( ) < €,

€ = ”x”jwpo*l

2

a contradiction, and so IIxnj s T x*|| < e. Hence, IIxnj LT x*|| < e for
* 0 *

all positive integers p > 1, and this implies that lim,_ llx, —x*|| = 0.
Uniqueness follows as in Case (i). This completes the proof of the
sufficiency, completing the proof of Theorem 1. |

THEOREM 2. Let X be a real uniformly smooth and uniformly convex
Banach space. Let A: D(A) € X = X be a bounded m-accretive operator
with closed domain D(A). Let N(A) #+ ¢. Then there exists a constant
dy > 0 such that for bounded sequences {u,},{v,} in D(A) and real sequences
{a, 1, (b}, {c, ), {d } (b}, {c)} satisfying the following conditions:

@ a,+b,+c,=1=d,+b, +c,,n=0,
(i) 0<b,+c,<dy,0<b, +c,<dy,n=0,
(i) Xi_ob, + », ¢, <c, < a? where a, =b, +c,, n >0,
(iv) lim, . .b,=lim,_ b =lim, __ c,=Ilim, __c =0,
the iteration process defined for any initial guesses x,, vy, u, in D(A) by

xn=1 = Qpn’
p,=a,x, +b,(I—A)Qy, +c,u,, (20)
Yo =d,x, +b, (I —A)x, +cv,, n=>0,

converges strongly to the unique solution x* of the equation Au = 0 if there
exists a strictly increasing and surjective function : R — R* with (0) = 0
such that

<A)cm0 —Ax*, j(x,, —x* ) = ¥ (llx,,, —x*M)lx,, —x*,
(AQy, — Ax*, j(Qy, —x*)) = w(1Qy, — x*INIQy, — x*,

where my, is the smallest positive integer such that Ax,, + 0.

(21)

Proof. The proof follows closely the proof of Theorem 1, so we shall
omit some of the details. By letting «, = b, + ¢, and B, = b, + ¢, (20)
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reduces to

Xn=1= Qpn’
Pn =X, — anAQyn - an(xn - QYn) - l]n’ (22)
Yo =X, — B, Ax, —c,(x, —Ax, —v,), n >0,

where U, = ¢,(Qy, — AQy, — u,).

If Ax, =0 for all n > 0, then (20) reduces to (10) and the conclusion
follows from Theorem 1. Suppose there exists n such that Ax, # 0. Then
without loss of generality we may assume that Ax, # 0. From (21) we get
llxg — x* Il < (Il Axo D.

Now set

m == max{sup{llu,ll}, sup{llv,ll}}.
ag = llx, I+ m + ¢~ (1 Ax,ll);
) = (7)) >0
M(xy) = sup{ll Aull: llu — x,ll < 2(ay + r(a,))};
R(xy) = #{M(xy) +r(ay) +ay+m + |lxll}.

By the uniform continuity of j on bounded subsets of X, for e:=
w(Zay)a,/4M(x,) there exists a & > 0 such that, for x,y € B(0, 2(a, +
r(ay), llx — yll < & implies || j(x) — j(y)Il < e. Set

a, r(ay) 5

d, = min 2R(x,) ' R(xo)(l +a, + 2r(a0)) , 3R(xg) .

Claim. {x,} is bounded.

Suppose the sequence {x,} is not bounded. Let n, be the first natural
number for which

||xnO — x| > a,. Then ||xn0_1 —x*[| < aq. (23)

Moreover, [[x, _; — xoll < llx, 4 — x*|l + llx* — xoll < 2a,, which gives
that [|Ax, _,ll < M(x,) and |lx, _;ll < 2a, + llx,ll and by (22), (23), and
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the above estimates we get that
10y, -1 — x* < Ily,,_, — x*|

X

no—1 —x* - Bno—leno—l
_Clno—l(xnu—l —Ax, _, — Uno—l)”
< ||)c,,0_1 —x*|| + Bno_l{ZM(xo) + ||an_1|| + m}
<agy+r(ag)
10y, -1 = xoll <y, -1 = xoll < lly, -1 = X*1 + lx* = x0ll < 2a, + r(ay).

Consequently, |40y, _ll < M(x,) and lly, _ill < 2a, + r(ag) + llxll
Again by (22) and the above estimates we obtain, as in the proof of
Theorem 1,

I, = 11 < 1%,y — 1| + a,, (1 40y, 4]
s, ll + 10y, oll) + 1T, 1l < ag + 2r(a)

and hence |lx, —x,ll <llx, —x*II +llx* — xoll < 2a, + 2r(ay), which
implies [|Ax, [| < M(x,) and |lx, || < 2a, + 2r(ay) + llx,|l.
Moreover,

10y,, — x*Il < lly,, — x*I < llx,, —x*I + B, (2ll4x, || + llx, || + m)
<ay+ 2r(ag) + B,{2M(xy) + 2aq + 2r(ag) + llxell + m}
<agy+ 2r(ag)

10y,, — xoll < lly,, = xoll < lly,, = x* I + [lx* = xoll < 2(aq + r(ay)),

and hence [|AQy, Il < M(xy) and lly, Il < 2(a, + r(ag)) + llxll
Now, by (22), (21), Lemma 2, and the above relations, and proceeding as
in the proof of Theorem 1 we obtain

2 2
o, o1 = x*N° < llx,, — x*|l

+ 20, 140, 1| i( oy = **) = i(Qy,, — x*)|
- 2a, (11O, — x*I)IQy,, — x*I

+2a, llx, — Oy, lllp,, —x*I + 21U, Illp,, —x*I.
(24)
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Moreover, we have the following estimates

10y,, = x* I = llx,, = x* Il = [1Qy,,, — x| > Mlx,,) = x*[[ = My, — x,,,]l

a
> g = B2, + Ix, ) + o)) = a0 = (3] = (3]

10, NI < ¢, (110, Il + 11 AQy, Il + m)
< ¢, R(xy) < a? R(xy) < a, r(ag).
I1p,, = x*II <llx,, — x*II + a, (140y, I + llx,, = Oy, II) + U, |
<ay + 2r(ag) + a,{M(x,) + 2r(ay)} <aq + 2r(ay).

Moreover,

2a, [Ix,, = Oy, ll-llp,, = x*I1 + 21l [I- 11, — x*1
< 2a,flx,, — Oy, )l + @, R(x0)}lIp,, — "I

Il

S Zano{”xno _yn0|| + anoR(xo)}”pnO - X

< 4an0r(a0)

g\ (4o
- “"0‘”( 2 )( 2 )
Thus (24), (21), and the above estimates give that

I3, 41 — ¥ < llx, — x*11° + 2canM(xO)||j(1r)n0 —x*) = j(Qy,, — x*)”

SR

Noting that by (22) and condition (ii)
“pno - QynOH <

and that (p, —x*),(Qy, —x*) € B(0,2(a, + r(a,)), we get by the uni-
form continuity of j that

¥(ay/2)a,

[7Cpa, =) = (@, =) = =575
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Substituting this in (25) we get

2 2
1x,,+1 = x*N1° < llx,, — x*|l

and hence [[x, ,; —x*|| <llx, — x*|l. Consequently,
1x,,01 — Xoll < llx, 41 — X*[1 + llxg —x*Il < 2{ay +r(ay)}

and
A%, ll < M(x,).

The rest of the argument follows as in the proof of Theorem 1 to yield
that {x,} is bounded. Consequently, the sequences {y,}, {Oy,}, {p,}, {A4x,},
and {AQy,} are bounded.

Again by (22), (21), and Lemma 2 together with the above estimates, we
get

X1 —x*I° <llx, —x*II?
+20,{IlAQy, I i(p, = x*) = i(Qy, —x") || + a, M,
+lx, — Oy, lllp, — x*II}
— 2a,y(I1Qy, — x* 1)y, — x*, (26)
where M, > 0 such that
UM p, — x*II < c,M; < a;M,.
Observe that

liminfllQy, — x*Il = liminflly, —x*[| = liminf|lx, — x*||.
n—>x n—x n—x

Let liminf, _ IIQy, —x*||= 8 = 0.

As in the proof of Theorem 1, § = 0. Since liminf,  |lx, — x*|| =0,
there exists a subsequence {||x, — x*|[} of the sequence {|lx, — x*|[} such
that Ilmﬁmllx —x*=0. It follows that, given e > 0, there exists a
posmve mteger Jo such that |lx, —x*[| <e forall j>j, (n; >n;). Set

= 201409y, jCp, — x*) —J(Qy =X+ a,M; +llx, + Oy, || P,
—x*ll) and observe that A, — 0 as n — . Then there exists a positive
integer N, such that A, < ;¢(5), a, < ¢/8(M, + M; + M), for all n >
N, where M, = sup{l|AQy,ll:n = 0}, M, = sup{llx,|l + 2| Ax,|| + m:n
> 0}, and M, is a positive constant such that

2
Ul < ¢, M, < a?M,.
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Aslim;_, . n; = %, we can choose j, such that N; > max{n;, N,} so that

lx, —x*ll <e,

and

A, <

n

forall n > N;, .

(27)

As in the proof of Theorem 1, it follows that ||xnj T x*|| < e for all

positive integers p > 1. Uniqueness also follows as in Theorem 1. This
completes the proof. |

Sl m

€
lp(E)’ G P = 800, + M, + M)

THEOREM 3.  Let X be a real Banach space which is uniformly convex and
uniformly smooth. Let T: D(T) € X — X be a bounded pseudocontractive
operator with closed domain D(T) such that range RQI — TYD(T)) = X.
Let NI —-T)# ¢. Let {u,},{v,} be bounded sequences in D(T) and
{a, 1, b} {c, ) {d } b} {c)) be real sequences satisfying conditions as in
Theorem 2 but with Au replaced by (I — T)u. Then the sequence {x,}
generated from arbitrary x,, vy, u, in D(T) by

Xpn+1 = Qpn’
pn = anxn + bnTQyn + Cnun’
y, =d,x, +bTx, +cp,, n =0,

converges strongly to the unique fixed point x* of T if there exists a strictly
increasing and surjective function : R*— R* with (0) = 0 such that

<TxmO = T, j(x,,, —x*)) < 1%, — x*|? - ¥ (llx,,, —x*)lx,, —x*|

(TQy, — Tx*, j(Qy, —x*)) <110y, — x*I* = w(1Qy, — x*I)IIQy, — x*,
(28)

where my is the smallest natural number such that Tx,, # x,, .

Proof.  Clearly, from (28), Gx = x — Tx satisfies
(Gx,, — Gx*,j(x,, —x*)) = y(lx, —x*I)llx,, —x*I,
(GQy, — Gx*, j(Qy, —x*)) = ¥(llQy, — x*)IQy, — x*I.

Thus by Theorem 2, {x,} converges to the unique solution x* of the
equation Gx = 0, which is the unique fixed point of 7. This completes the
proof. 1
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3.2. Self-Maps

If in Theorems 1-3, the domain of the operator is X (i.e., the operator
is a self-map) the use of the projection operator Q will not be necessary
and X need not be uniformly convex. In fact, the following corollaries
follow trivially. In Corollary 4 (below), the Q in the definition of Condition
(D) is replaced with I, the identity map on X.

COROLLARY 4. Let X be a real uniformly smooth Banach space. Let A:
D(A) = X — X be a bounded accretive operator which satisfies condition (1).
Then there exists a constant d, > 0 such that for bounded sequences {u,},{v,}
in D(A) and real sequences {a,},{b,}, {c,},{a,},{b,},{c,} satisfying the follow-
ing conditions:

@ a,+b,+c,=1=d,+b,+c,,n=0,

(i) 0<b,+c,<dy,0<b,+c,<dy n=0,

(i) Yi_,b, =, ¢, <c, < a? where a, =b, +c,, n >0,
Gv) lim,. b, =lim, .5 =lim, . c, =lim,_.c =0,

the sequence {x,} generated from arbitrary x,, vy, u, in D(A) by
+b,(I—A)y, +c,u

n=n?

xn+1 =a xn

(29)

X n >0,

n
y, =d,x, +bx, +cp
converges strongly to the unique solution x* of the equation Au = 0 if and
only if there exists a strictly increasing and surjective function : [0, ) = R*

- N with ¢(0) = 0 such that

(Ay, = A, j(y, =x*) = ¢(ly, = x*Dly, —x*I.
COROLLARY 5.  Let X be a real uniformly smooth Banach space. Let A:
D(A) = X — X be a bounded accretive operator. Let N(A) + ¢. Then there
exists a constant dy > 0 such that for real sequences {a,}, {b,}, {c,}, {a,}, {b}},
{c} satisfying conditions as in Theorem 2 but with Q replaced by I (the
identity map on X) and for bounded sequences {u,},{v,} € X, the sequence
{x,} generated from x4, uy, vy € X by

X1 =a,x, +b,(I—A)y, +c,u

n-n?

n n?

(30)
y, =d,x, +b(I—A)x, +cuv,, n >0,

converges strongly to the unique solution x* of the equation Au = 0 if there
exists a strictly increasing and surjective function . X7 — R* with ¢(0) = 0

such that
(Ax,, —Ax*,j(x,, —x*) = ¢(lx,, —x*)x,, —

(Ay, = A, j(y, =x*) = g(lly, —x*Dlly, —x*I,
where my, is the smallest positive integer such that Ax,, + 0.
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COROLLARY 6. Let X be a real uniformly smooth Banach space. Let T
D(T) = X - X be a bounded pseudocontractive operator. Let N(I — T) #
¢. Let {u,},{v,} be bounded sequences in D(T) and let {a,}, {b,}, {c,}, {d,},
{b,}, {c),} be real sequences satisfying conditions as in Theorem 3 but with Q
replaced by I (the identity map operator on X). Then the sequence {x,}
generated from x,, vy, uy in D(T) by

X, =a,x, +b,Ty, +c,u

n n~n?

n
WX, + b, Tx, +cv

n n-n?

Yp=24a n > 0,
converges strongly to the unique fixed point x* of T if there exists a strictly
increasing function : W — R*, y(0) = 0 such that

<Txm0 = Ix*, j(x,,, —x*)) < llx,,, — x| — ¥ (llx,,, —x*Dlx,,, —x*I
(Ty, = T, j(p, = x*)) <y, =41 = w(ly, = x*lly, —x*1,

where m, is the smallest positive integer such that Tx,, # x,, .

Remark 7. 1. We note that, under the hypotheses of Theorems 1, 2,
and 3, and Corollaries 4 and 5, the usual Mann iteration sequence with
errors converges strongly to the unigue solution x* of the equation
Au = 0 or Gu = 0. This follows by letting b, = ¢, = 0.

2. In Corollary 4, if we set ¢, = ¢, =0, then the scheme (29)
reduces to x,,, =x, — a,Ax, which is the so-called steepest descent
method considered in [45, 11, 32].

3. In Corollary 5, be setting ¢, = ¢, = 0, the scheme (30) reduces to

Xnt1 = Xn — anAyn -y BnAxn
ynzxn_BnAxn' nx=0,

which is the Ishikawa-type scheme studied by Z. Haiyun and J. Yuting [25].

4. Thus, our theorems are significant generalizations of the results in
[45, 11, 32, 25] and a host of other results to the more general iteration
schemes with appropriate error terms. Furthermore, our method of proofs
in our more general setting is simpler than the methods used in [11, 45, 25]
and is of independent interest.

5. All out theorems in this paper hold when the mappings are set-valued
if such mappings admit single-valued selections. In such cases each opera-
tor in our recursion formula is replaced with its single-valued selection.
We omit the details.
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6. A prototype for the parameters of our iteration process

do
a,=d,=1—- ——
(n+1)
oy d
" (n+ 1) (n+1)
=c = —dé
" "o(n+ 1)2
r all integers n > 0.
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