
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
http://www.researchgate.net/publication/11046674

Optimal	design	for	dispersion	experiment

ARTICLE		in		WATER	RESEARCH	·	DECEMBER	2002

Impact	Factor:	5.53	·	DOI:	10.1016/S0043-1354(02)00170-7	·	Source:	PubMed

READS

21

1	AUTHOR:

Jonah	Agunwamba

University	of	Nigeria

59	PUBLICATIONS			166	CITATIONS			

SEE	PROFILE

Available	from:	Jonah	Agunwamba

Retrieved	on:	28	December	2015

http://www.researchgate.net/publication/11046674_Optimal_design_for_dispersion_experiment?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_2
http://www.researchgate.net/publication/11046674_Optimal_design_for_dispersion_experiment?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_1
http://www.researchgate.net/profile/Jonah_Agunwamba?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_4
http://www.researchgate.net/profile/Jonah_Agunwamba?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_5
http://www.researchgate.net/institution/University_of_Nigeria2?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_6
http://www.researchgate.net/profile/Jonah_Agunwamba?enrichId=rgreq-3c1bbaad-9e55-4b14-ad6c-5ca4179e4a16&enrichSource=Y292ZXJQYWdlOzExMDQ2Njc0O0FTOjI0MjQwODczODc4MzIzNEAxNDM0ODA2MTU1NDg3&el=1_x_7


Water Research 36 (2002) 4570–4582

Optimal design for dispersion experiment

J.C. Agunwamba

Department of Civil Engineering, University of Nigeria, Nsukka, Nigeria

Received 12 July 2001; received in revised form 29 January 2002; accepted 22 March 2002

Abstract

The dispersion coefficient ðDÞ is a very important parameter for the management of water quality and pollution

control. Conventional sampling methods are based on tracer studies. Sampling periods and intervals are often

subjective and left to the choice of the experimenter. Sometimes several observations are made to determine D: Yet,

making several observations does not necessarily ensure accurate estimation of the parameters. Sampling of tracer

concentrations at poor times will result in inaccurate estimates of D and the flow velocity ðuÞ: Therefore, the main aim of

the study in question was to investigate the optimal sampling times for conducting fixed position variable-time sampling

for tracer concentration experiments. This objective was achieved by the minimization of the least square criterion and

applying the method proposed by Box and Lucas. The relative efficiency of each experimental design is predicted before

data collection and analysis and confidence regions plotted. Results, on optimal sampling times for experiments are

presented and illustrated. The application of these findings will harmonize results and reduce cost and labour expended

on dispersion experiments. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

A dispersion coefficient ðDÞ or its dimensionless form,

dispersion number ðdÞ is a very important parameter for

the design of outfall structures. It is also useful for the

determination of assimilatory and reaeration capacities

of streams, and the general management of water quality

and pollution control.

Several investigations have been done in modeling the

dispersion of contaminants, prediction of the distribu-

tion of pollutant downstream from its point of discharge

and evaluation of D from time-concentration curves [1–

10].

In all the above investigations, tracer studies formed a

very essential tool for model calibration and verification

as well as characteristics studies. Although tracer studies

have played a major role in the advancement of

dispersion studies and pollution control generally,

evaluation of experimental errors and improvement of

sampling plans have not been studied much. A method

of reducing the sampling period by sampling both at

different times and positions along a channel has been

proposed [1]. The present work is focused on the

conventional fixed position sampling where only time

is varied. Experiments are embarked upon without

adequate design. This omission can result in excessive

experimentation or inaccurate determination of D:
Reported variations [3] in D values are up to 100%.

The assumption that sampling should be terminated

2:5Y (where Y is the detention time) after injection

[7] is not always adhered to. Experiments have

been terminated before 2Y [11] while others have

been terminated after 0:99; 2:66; 3:33 and 4:44Y [6].

Upto 101 data were used to compute a single value

of d for Portimao primary facultative pond. The use

of different sampling periods and intervals makes a

realistic comparison of results from researchers and

the interpretation of their results difficult. Besides,

it is questionable whether one could have obtained a

reasonably accurate value of D without resorting to

using some excessive data. Of course reduction of the

sample size will obviously result in reduction in cost andE-mail address: epseelon@aol.com (J.C. Agunwamba).
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labour. In the light of the above problems, the objectives

of the paper are:

(1) to investigate the adequacy of data currently

collected during tracer studies and consequently

the adequacy of the experimental strategies.

(2) to study carefully some typical examples of experi-

ments conducted, identify poor designs and suggest

ways in which greater efficiency can be obtained,

and

(3) to suggest a sampling plan for which measurements

will give the least error in the estimation of D and u:

2. Theoretical basis

2.1. Least square objective criterion

In this work, a one-dimensional dispersion equation is

applied in the selection of the most efficient experimental

design. The most efficient design is usually the one which

gives the highest precision in parameter estimation. The

precision of estimated parameters is often increased by

using a larger number of observations. However, the

quality of the estimated parameters depends also on the

experimental design, that is, the actual choice of levels of

the variables at which measurements are made.

The least square estimates of D and u are those values

that minimize the sum of squares criterion

S ¼
Xn

i¼1

½ym � yp�2; ð1Þ

where

yp ¼
M

A0

ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp �
ðL � utiÞ

2

4Dti

ð2Þ

ym and yp are measured and predicted tracer concentra-

tions respectively, M is the mass of tracer per channel

volume, A is the channel cross sectional area, L is the

channel length and t is the time.

Unlike in linear equations where taking the deriva-

tives of S partially with respect to D and u; equating

each to zero and solving them simultaneously give

optimum values of u and D; in the non-linear case, it is

usually hard to solve explicitly. The location of the

minimums often involves an iterative search of the

parameter space using a digital computer. The initial

estimates of u and D must be supplied. The different

methods used in parameter estimation include lineariza-

tion (Taylor series), steepest descent and Marquardt’s

Compromise [12].

Marquardt’s compromise [13] represents a compro-

mise between the linearization method and the steepest

descent method and seems to work well in many

circumstances and is thus a sensible practical choice.

Because of the additional need to plot the contour,

additional values of the sums of squares other than the

minimum values are obtained.

2.2. Precision and reliability

It is not enough to obtain least square estimates of u

and D; the reliability and precision of the estimates must

be investigated. The precision of an estimate is

represented by a confidence interval associated with an

estimated parameter. A confidence region gives the joint

precision of the parameters estimated simultaneously. A

critical level of the sum of squares Sc may be calculated

for delineating a confidence region:

Sc ¼ S� þ S2PFX ðP; n � PÞ ð3Þ

in which S� is the minimum sum of squares, P is the

number of estimated parameters; n � P is the degree of

Nomenclature

A channel or pond cross sectional area (m2)

A0 Hessian matrix, HðyÞ
d dispersion number

D dispersion coefficient (m2/d)

E largest difference between risks

f dispersion equation evaluated at y
Fx upper (1-a) 100% point of the F -distribution

HðyÞ Hessians matrix

l dimension of ellipsoid

L channel or pond length (m)

M mass of tracer per channel volume

n number of observations made

N approximate Hessian

p number of parameters

P degree of freedom associated with S2

s sum of squares

Sc critical level of sum of squares

S� minimum sum of squares

t time

u flow velocity

v covariance matrix

x derivative matrix

ym measured tracer concentration (mg/l)

yp predicted tracer concentration (mg/l)

Greek symbols

D a measure of precision

G gamma function

y vector representing u or D

Y detention time.
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freedom associated with the estimated variance S2; and
FX (p; n � P) is the upper ð1� aÞ 100% point of the F -

distribution with P and n � P degrees of freedom

[14,15]. For normally distributed experimental errors,

an estimate of the experimental error variance, S2; is

expressed by

S2 ¼
S�

n � P
: ð4Þ

How much u and D can be varied from their optimal

values were evaluated by the E-difference region defined

by [12].

y ¼ y7ð2E=AÞ; ð5Þ

where y is a vector, in this case, representing either u or

D which is the equation of an one-dimensional ellipsoid

whose volume is ð2EpÞ1=2 det�1=2 A=GðL=2 þ 1Þ; A is the

Hessian matrix HðyÞ of the function of the second

partial derivatives; that is

HðyÞ ¼

q2f

qu2

q2f

quqD

q2f

quqD

q2f

qD2

0
BB@

1
CCA ð6Þ

f represents the dispersion equation evaluated at

optimal values of yðu;DÞ; and E is the largest difference

between risks we are willing to consider insignificant.In

order to estimate the covariance matrix ðVÞ in the case

of single least squares, the equation

V ¼ S2
Xn

i¼1

ðqfi=qyÞðqfi=qyÞT
" #�1

ð7Þ

is used where S2 is the variance determined from Eq. (4)

and ðqfi=qyÞ
T is the transpose matrix of qfi=@y:

Eq. (7) may be reduced to

V ¼ 2S2N�1 ð8Þ

in which N is the approximate Hessian

N ¼ 2
Xn

i¼1

ðqfi=qaÞðqfi=qBÞ ða;b ¼ 1; 2Þ ð9Þ

in vectorial form evaluated at the optimum values of u

and D:

3. Experimental design

The design is aimed at determining the sampling times

(for instance, t1; t2; t3; and so on) for the tracer, which

will yield the best estimates for u and D: This was done

by maximising the determinant of the derivative matrix,

X which Berthouex and Hunter [14] defined as

X ¼ ðXijÞ ¼

X11 X21 y Xp1

X12 X22 y Xp2

^

X1n X2n y Xpn

0
BBB@

1
CCCA ð10Þ

in which p is the number of parameters, n is the number

of observations made and

Xij ¼ qf ðy; tÞ=qyi; i ¼ 1; 2y; p; j ¼ 1; 2;y; n: ð11Þ

For p ¼ 2 and n ¼ 2

X ¼
X11 X12

X12 X22

�����
�����; ð12Þ

a1

2D
ðL�ut1Þexpð�b1Þ

�a1

2D
þ

a1ðL�ut1Þ
2

4D2t1
expð�b1Þ

a2

2D
ðL�ut2Þexpð�b2Þ

�a2

2D
þ

a2ðL � ut2Þ
2

4D2t2
expð�b2Þ

0
BBB@

1
CCCA;

ð13Þ

Fig. 1. Variation of coefficient of dispersion D; with the number of experimental points, n for Vidigueira and Portim%ao with the peak

concentrations included.
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where

a1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDt1
p ; a2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt2

p ; b1 ¼
ðL � ut1Þ

2

4Dt1
ð14Þ

and

b2 ¼
ðL � ut2Þ

2

4Dt2
:

The determinant of the matrix in Eq. (13), D is obtained

as

D ¼
a1ðL � ut1Þ

2D
expð�b1 þ b2Þ

�a2

2D
þ

a2ðL � ut2Þ
2

4D2t2


 �

�
a2

2D
ðL � ut2Þ

�a1

2D
þ

a1ðL � ut1Þ
2

4D2t1


 �
expð�b1 þ b2Þ:

ð15Þ

The analytical solution is found by setting the

partial of the derivatives of D with respect to t1 and t2
to zero and finding the simultaneous solution of

the two resulting equations. For a two-parameter

model with n observations the value of the determinant

is

D ¼
Xn

i¼1

ðxijÞ
2
Xn

j¼1

ðx2jÞ
2 �

Xn

i¼1

x1j x2j

 !2

: ð16Þ

Table 1

Variations of flow velocity (u), dispersion coefficient (D) minimum least squares sum (S) and critical least squares sum (Sc) with the

number of data points for the four experiments (with peak)

Experiment Estimated parameters Sum of squares Number of data points

Skip u (m/d) D (m2/d) S Sc n

0 10 800 384 445 43

1 11 800 227 306 22

2 11 1000 162 257 15

1 3 12 1000 141 275 11

4 12 1000 144 339 9

5 15 1200 116 315 8

6 16 1200 111 368 7

7 19 1200 111 496 6

0 12 800 506 551 72

1 12 1000 285 340 36

2 11 800 192 252 24

2 3 11 800 175 254 18

4 12 800 168 267 15

5 11 600 149 271 12

6 12 400 139 271 11

7 10 600 131 308 9

0 23 3600 92 109 36

1 25 4000 48 70 18

2 24 4000 38 68 12

3 3 24 4000 31 73 9

4 23 4000 29 79 8

5 30 4000 31 136 6

6 25 4000 34 151 6

7 29 4000 29 210 5

0 30 4000 1550 1647 101

1 30 4000 768 868 51

2 30 4000 585 706 34

4 3 30 4000 567 728 26

4 29 4000 370 507 21

5 30 4000 339 505 17

6 30 4000 321 509 15

7 29 4000 237 409 13

J.C. Agunwamba / Water Research 36 (2002) 4570–4582 4573



D is a measure of the precision of design. D1=2 is inversely

proportional to the size of the confidence region. The

larger D1=2 is the greater the precision.

3.1. Data source

Two sets of data were used for the illustration of an

optimal experimental design: laboratory and full scale

waste stabilization pond data. The laboratory data were

based on tracer experiments conducted by the author in

a 14m channel in the Department of Civil Engineering

Hydraulic laboratory already published in a different

paper [1]. The full-scale pond data were from tracer

experiments conducted in Portugal [6]. These experi-

mental results will be examined with respect to the

adequacy of their design, precision and reliability.

Alternative designs involving a small number of

observations shall be investigated.

4. Results and discussion

4.1. Variation of d with number of data points (n)

Fig. 1 and Table 1 show the variation of D with the

number of experiments when the peak concentrations

are included in the determination. The data were

obtained from the literature [6]. In all cases the same

optimal or close-to-optimal values can be obtained by

using a smaller number of experimental points. For

instance, in experiment run 2, the optimal pair of values

are u ¼ 12m/d and D ¼ 800m2/d for n ¼ 72: This same

pair of values was obtained when the number of

observations is 15. These results emphasize the possibi-

lity of obtaining the optimal values with smaller

experimental data (Table 1). However, the correspond-

ing precision of the estimates is also very important.

Fig. 2 above shows the same variation as in Fig. 1 but

with D replaced with the dispersion number, dð¼ D=ulÞ:

Fig. 2. Variation of dispersion number, d with the number of data points, n for Vidigueira and Portim%ao ponds with the peak

concentrations included.

Fig. 3. Least square contours for experiment runs 1 with high

U and D ranges.

J.C. Agunwamba / Water Research 36 (2002) 4570–45824574



The dispersion number appears to be more sensitive to u

than D is to n: This is attributable to the effect of u in the

formula for d computation.

4.2. Contours

The contours of the sum of least squares for the

estimation of u and D are shown in Fig. 3 for experiment

run 1. The confidence region is small. Within 95%

confidence the true values of u and D are included within

this region. As expected the contours are not ellipsoidal

but irregular and ‘banana-shaped’. The optimum

estimates are u ¼ 10m/d and D ¼ 800m2/d. The con-

tours are approximately well-rounded ellipses. Hence,

the surface is well conditioned. The axes of the ellipses

are parallel to the u and D axes, hence the value which

makes S a minimum has no dependence on D: That is,

specific information about D which fixed its value would

not alter the least squares estimate u: Since the longer

axis is parallel to D axis, D is ill-determined whereas u is

well determined. The smaller scale used on the u-axis

seems to give the impression in Fig. 3 that the

reverse is the case. That u is well conditioned unlike D

which is made clearer in Fig. 4. For all the ranges

of u and D (0–80 and 0–4000m2/d, respectively)

considered, there were two global minimums. At higher

values of u and D the minimum occurred at ðu;DÞ ¼
ð10; 800Þ (Fig. 3), at low values at ðu;DÞ ¼ ð0:5; 1:49Þ
(Fig. 4). The critical least square criterion ðScÞ and the

least square criterion ðSÞ vary significantly with n: The

values of n where Sc > S will obviously yield a low

precision of the estimates. ScoS does not necessarily

imply that the values of n and selection of those

corresponding sampling times will give a high precision

since the criterion is only approximate for non-linear

functions. However, the results also confirm that an

estimation of D and u with reduced data requirement is

possible.

Table 2 shows the computation of S and Sc without

the peak values. The absence of the peak values does not

have much effect on the optimal values. A small

sampling interval, small differences between the peak

and neighbouring concentrations as well as multiple

peaks were responsible. In fact, because of the extent of

short-circuiting observed, the removal of the peak

reduced the variance as Tables 3 and 4 show. Even

though u and D can be estimated with smaller data

points, it is necessary to examine the precision of the

estimates. The precision and reliability are investigated

by computing the E-difference using relationships

already expressed in Eqs. (3)–(9).

Consider the optimal data for experiment run 1 for

n ¼ 43 (Table 1).

s2 ¼ 384=ð43� 2Þ ¼ 9:3659

therefore

s ¼ 3:0604

V ¼ 17; 097:714
8:605	 10�5 7:5109	 10�3

7:510875	 10�3 7:02141

 !
:

The standard deviations of u and D are su ¼ ð8:6051	
10�5 	 17; 097:714Þ1=2 ¼ 1:21296 and sD ¼ ð7:02141	
17; 097:714Þ1=2 ¼ 346:4824: The correlation between the

estimates is

7:510875x10�3 	 17; 097:714

1:21296	 346:4824
¼ 0:3056:

Since the variance of D is high it is ill-determined [12].

Fig. 4. Least square contours for experiment runs 1 with low U

and D ranges.
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Using the E-difference formula (Eq. (5)), ð2E=AÞ ¼
1:067 and 304.9 for u and D respectively. Hence, the

ranges of u and D are 8.933pup11.067 and

495.1pDp1104.9, respectively for E ¼ 4:
The design locus of dispersion for the four experi-

ments is shown in Fig. 5. The experimental observations

to be made must be chosen from the locus of points on a

curved line in the ðx1; x2Þ space where x1 ¼ qf =qu and

x2 ¼ qf =qD: The function x2 has been plotted against x1

for the four experiments at the corresponding optimal

values of u and D: As t goes from 0 to N these pairs

trace out the curve shown in Fig. 5, called the design

locus which give the maximum area at the optimum

sampling times. The dotted lines in experiment run 3

shows the points as t1 ¼ 3:521 days and t2 ¼ 14:927
days. Additional points are at t ¼ 0 and N: These are

also the values found by straightforward maximization

of the design criteria except the point t ¼ 64:99 which is

as good as t ¼ N considering the fact that most of the

tracer would have almost completely decayed at that

point.

4.3. Comparison between least square and levenspiel D

and u

D and u are indicated in Fig. 6. Estimation of D and u

has always been a problem. None of the methods

proposed so far yields best values of D and u because

they are influenced to a greater or less degree by

deviations of the observed data from the model [10].

Methods of estimating D from t2c curves are unreliable

at best and highly inaccurate at worst. The principle of

Table 2

Variations of flow velocity (u), dispersion coefficient (D) minimum least squares sum (S) and critical least squares sum (Sc) with the

number of data points for the four experiments (without peak)

Experiment Estimated parameters Sum of squares Number of data points

Skip u D S Sc n

0 10 800 294 342 42

1 10 800 137 188 21

2 9 800 67 111 14

1 3 9 600 42 89 10

4 9 400 32 87 8

5 8 600 21 69 7

6 8 400 17 62 6

7 8 400 17 124 5

0 12 1000 438 478 71

1 13 1000 193 232 35

2 12 800 85 113 23

2 3 13 1000 63 94 17

4 13 800 55 90 14

5 13 800 33 64 11

6 13 600 20 42 10

7 11 600 11 29 8

0 23 3800 77 93 35

1 24 3600 40 60 17

2 24 3400 24 47 11

3 3 21 3400 16 45 8

4 18 3400 15 49 7

5 25 3400 18 131 5

6 19 3400 18 136 5

7 22 3400 16 318 4

0 30 4000 1440 1541 100

1 30 4000 635 720 50

2 30 4000 473 574 33

4 3 30 4000 186 241 25

4 30 4000 357 498 20

5 30 4000 224 344 16

6 30 4000 187 308 14

7 30 4000 87 158 12

J.C. Agunwamba / Water Research 36 (2002) 4570–45824576



least square estimation of non-linear parameters must be

used to provide acceptable accuracy. The optimum D

and u vary remarkably from values computed by the

Levenspiel and Smith method as shown in Fig. 6.

4.4. Determination of the optimum sampling times

The two equations for t1 and t2 are similar and solving

them will give the same values. Solving the equations

dD=dt ¼ 0; we obtain

T ¼L=u; t ¼ 0; t ¼ N and L4 � 2L3ut þ 2Lu3t3

� u4t4 þ 2D2t2 � 7DtL2 þ 5u2t2D þ 2LuDt2 ¼ 0:

ð17Þ

Dividing by L4 right through we obtain

1�
2ut

L
þ

2u3t3

L3
�

u4t4

L4
þ

2D2t2

L4

�
7Dt

L2
þ

5u2t3D

L4
þ

2uDt2

L3
¼ 0: ð18Þ

The equations can be split into two in order to examine

the roots.

That is

y1 ¼ �1þ P1t4 � P2t2 ð19Þ

and

y2 ¼ M1t3 � M2t; ð20Þ

where

P1 ¼ u4=L4; P2 ¼ 2D2=L4 þ 2uD=L3;

M1 ¼ 2u3=L3 þ 5u2D=L4; M2 ¼ 2u=L þ 7D=L2:
ð21Þ

The intersection of the two curves will give the roots of

the original equation. The number of real roots will

depend on the coefficients of the terms. When the curves

are sketched and all possible intersections identified, two

cases emerge. There are 3 real roots if y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
o1

and only one real root if y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
> 1: The real

roots occur after t > ½�P2 þ ðP2
2 þ 4P1Þ

1=2�1=2=ð�2P1Þ
1=2;

between t ¼ ðP2=2P1Þ
1=2 and ½M2=M1�1=2; and between

t ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
:

Depending on the values of M1 and M2;
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
is greater or less than 1. For instance,

for D ¼ 3600m2/d, u ¼ 21m/d and L ¼ 350:2m, M1 ¼
1:1997	 10�3; M2 ¼ 0:3368: Hence, y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
o1:

Hence, there will be 3 real roots (3.373, 14.139, 64.990).

However, for very low values of d (D ¼ 0:015m2/s,

u ¼ 0:35m/s and L ¼ 14m), y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=3M1Þ

p
> 1 and

there will be only one root (21.2846 s). It is necessary

then to ensure that samples are collected at least once

between each of the above three sets of ranges in order

to maximize the precision. Additional values may be

collected at t ¼ L=y and for as long a time as possible

after the injection of tracer ðt-NÞ:
The roots of this equation will give the required values

of optimal times to conduct the experiment.

Again, experiment run 3 is used for an illustration.

With the optimum values of u and D ¼ 23 and 3600m2/

d, respectively and L ¼ 350:2m, the Newton–Raphson’s

method gives –17.9332, 3.273, 14.1387 and 64.990 days

within an error of 710�3. Other values are L=u; t ¼ 0

and N:

4.5. Experimental designs

Two cases are considered and they are based on data

collected from a laboratory channel and a field pond

respectively. By choosing optimum sampling times the

data requirement can be reduced. The laboratory case is

given in Table 5 and Fig. 7 involving 6 different

Table 3

Ranges of estimated parameters and their corresponding

correlation coefficients and standard deviations for E ¼ 4 with

peak concentrations included

Experiment Ranges of estimated parameters Correlation

u D

1071.067 8007304.9

1 (1.2130)a (346.5) 0.3056

2 1270.373 10007178.0

(0.515) (245.7) 0.2264

3 2371.377 36007988.6

(1.216) (873.2) 0.3646

4 3070.381 40071092.7

(0.569) (2162.3) �0.0203

aFigures in parenthesis are the standard deviations.

Table 4

Ranges of estimated parameters and their corresponding

correlation coefficients and standard deviations for E ¼ 4

without peak concentrations included

Experiment Ranges of estimated parameters Correlation

u D

1 1070.782 800791.6

(1.069)a (125.2) 0.1275

2 1270.394 10007178.0

(0.510) (230.8) 0.2370

3 2371.428 36007992.6

(1.167) (810.9) 0.3550

4 3070.387 400071092.7

(0.741) (2094.8) �0.0106

aFigures in parentheses are the standard deviations.
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experimental designs. For this experiment with

u ¼ 0:35m/s, D ¼ 0:015m2/s and L ¼ 14m, the roots

of the equation are t ¼ 0;L=u (40 s) and N: The

precision of estimation of u and D using each of the

designs depends on the values of D:

Fig. 5. Design locus of dispersion for Vidigueira and Portim%ao waste stabilization ponds for experiments 1–4.

Fig. 6. Comparison of least square and Levenspiel estimates of

U and D for the four experiments runs.

Table 5

Evaluation of design determinant D for six typical dispersion

coefficient and flow velocity estimation

Typical

design

(Fig. 6)

Number of

points (n)

D ¼ 0:015m2/s, u ¼ 0:35m/s, L ¼ 14m

D Remark

a 12 210,515.1 Excluding some tail points

b 12 285,220.4 Excluding some initial points

c 12 177,244.1 Without points around L=u

d 10 351,167.8 Cluster around roots

e 10 2,794,284.1 Replicate

f 15 359,303.7 All 15 observations
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Generally, clustering all observations before the peak

alone or after the peak alone is not a good design. In

each case the value of ðSxijx2jÞ
2 is maximized, thereby

reducing the overall efficiency. Designs a and b show

that removal of tail points (a) has less significant effect

on D than when earlier readings were removed (b). This

result is very crucial especially since conventionally

much emphasis is placed on the long tail than at the

beginning. Experiments should therefore be conducted

to collect points before the peak. This calls for careful-

ness and readiness to start sampling before the peak is

quickly reached. However, cutting off all the tail points

entirely will mean that the path of the curve at the lower

end will be uncertain. Such points are necessary to

reduce the uncertainty in the path of the curve.

In design c; removal of values at t ¼ 38; 40 and 42 s

produces a very significant reduction in D by 182,060.

The inclusion of points around L=u (40 s) is crucial for

maximization of D: Taking readings at t ¼ L=y helps to

maximize the value of Sx2
ij while minimizing Sðxijx2jÞ

2:

Fig. 7. Typical dispersion experimental designs with values of D for D ¼ 0:015m2/s, U ¼ 0:35m/s and L ¼ 14m (laboratory channel).

Table 6

Evaluation of design determinant D for six typical dispersion coefficients and flow velocity estimation

Typical design

(Figs. 7 and 8)

Number of

points (n)

D ¼ 3600m2/day, u ¼ 23m/day, L ¼ 350:2m

D (	 10�20) Remark

a 36 4.4634 All observations

b 31 3.2542 Excluding 5 tail points

c 31 0.71425 Excluding 5 initial points

d 31 0.0088751 Excluding sampling at t ¼ 10–15 days

e 18 1.9710 Starting from first non-zero point skip 1 point

f 18 7.5221 Clustering around roots—8 experimental points

around 3.221; 6 around 15.221 (or 14.139) and 4 from t ¼ 31–37 s
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Well-positioned 10 points clustered around t ¼
21:2846;L=y; 36, 37, 40 and 42 with other filling points

at t ¼ 26; 41 and 44 gave a very high D: The 10 points

yielded almost the same value with the 15 points. Design

(d) illustrates that provided the experimental design is

efficient a precise estimation of parameters can be

Fig. 8. Typical dispersion experimental designs with values of D for D ¼ 3600m2/d, U ¼ 23m/d and L ¼ 350:2m (Portim%ao WSP).
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obtained without a large number of observations.

Design (f) is the whole set of 15 points obtained

experimentally [1] while design (e) is replicated. A

number of 4, 2, 3 and 1 readings were taken at t ¼
21:2846; 40, 44 and 50 s, respectively. The values of D ¼
2; 794; 284: This implies that D1=2ð¼ 1671:61Þ is three

times higher than using 15 unreplicated samplings

ðD1=2 ¼ 599:42Þ: A replicated design will produce more

precise estimates with fewer observations.

Similar results were obtained in experiment run 3 in a

full-scale waste stabilization pond (Table 6 and Figs. 8a

and b). Designs b, c and d have 31 points each. The

removal of five points at the tail end resulted in a lower

reduction of D than removal of the initial points. Again,

this emphasizes the importance of sampling early within

the diffused period to establish the trend of the rising

curve. Sampling without including t ¼ 10 to 15 days

gave a value of D¼ 8:8751	 10�17 (design d). It is very

essential to sample around L=y (=15.226 days).

Designs (e) and (f) each has 18 points. In design (e),

retaining the first non-zero point, alternative points are

omitted. The value of D¼ 1:97104	 10�20: By clustering

9 readings from 0.1 to 8.0, 5 readings around 15.226 (i.e.

L=y) and taking the next 4 from t ¼ 31 to 37 days),

D¼ 7:5221	 10�20: While the first 9 readings including

the optimal t ¼ 3:273 days fix the rising portion of the

curve the last points are meant to fix the lower portion

of the curve.

Well-selected 18 points of design e yielded a better

precision than making 36 observations (design a) or

skipping some observations alternately within the period

(design e). Even though one of the roots is 64.990 days,

stopping the sampling about 2y (30.4522 days) as was

done here will give a high precision. However, the actual

period to stop sampling shall be treated in the next

paper.

5. Conclusion

The paper has investigated an experimental design for

the estimation of dispersion coefficient and flow velocity.

The Box and Lucas [15] method was used to examine

design of experiments to achieve high precision.

Sampling can be predicted before the experiment and

this greatly facilitates the steps in obtaining good

estimates of u and D: Making a great number of

observations does not necessarily produce correspond-

ing high precision estimates that are commensurate with

work expended. The following conclusions can be drawn

from the work, both from the field pond and laboratory

data analysed.

1. As expected the least square contours are not

ellipsoidal but tend to be irregular and often

‘‘banana-shaped,’’ with two global minimums, one

at high u and D values and the other at low values of

d.

2. With respect to the two parameters u and D; u

appears more well conditioned than D at low

velocity. The reverse is the case at a high flow

velocity.

3. The number of observations currently made in some

experiments can be whittled down while still obtain-

ing good estimates at high precision by clustering the

sampling around L=y and other optimal times given

by the roots of dD=dt ¼ 0: There could be three or

one real roots depending on the values of D; u and L:
Eighteen (18) properly located points were found to

be essentially as good as 36 points. Obviously,

making a small number of observations has some

savings in terms of cost and energy.

4. Several observations should be made before the peak

to fix the trend of the rising curve accurately. Fixing

the rising curve is more critical for high precision

than fixing the tail end.

However, detailed analysis should be conducted with

more data to investigate the applicability of the above

method in planning tracer studies for natural water

systems.
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