
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/228538200

MEASUREMENTS	OF	RADIO	PULSAR	BRAKING
INDICES:	A	STATISTICAL	APPROACH

ARTICLE	·	JANUARY	2009

READS

40

3	AUTHORS,	INCLUDING:

A.	E.	Chukwude

26	PUBLICATIONS			54	CITATIONS			

SEE	PROFILE

Chika	Onuchukwu

Anambra	State	University

16	PUBLICATIONS			3	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Chika	Onuchukwu

Retrieved	on:	24	December	2015

http://www.researchgate.net/publication/228538200_MEASUREMENTS_OF_RADIO_PULSAR_BRAKING_INDICES_A_STATISTICAL_APPROACH?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/228538200_MEASUREMENTS_OF_RADIO_PULSAR_BRAKING_INDICES_A_STATISTICAL_APPROACH?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/A_Chukwude?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/A_Chukwude?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_5
http://www.researchgate.net/profile/A_Chukwude?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Chika_Onuchukwu?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Chika_Onuchukwu?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Anambra_State_University?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Chika_Onuchukwu?enrichId=rgreq-72663f35-7e80-44cf-89e6-f5d142cfc65f&enrichSource=Y292ZXJQYWdlOzIyODUzODIwMDtBUzoxMDQxOTQ2OTg2NDU1MTVAMTQwMTg1MzM2MDc1MA%3D%3D&el=1_x_7


Available at: http://publications.ictp.it IC/2008/092

United Nations Educational, Scientific and Cultural Organization
and

International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

MEASUREMENTS OF RADIO PULSAR BRAKING INDICES:

A STATISTICAL APPROACH

A.E. Chukwude1

Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria

and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy,

A.A. Baiden
Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria

and

C.C. Onuchukwu
Anambra State University, Uli, Anambra State, Nigeria.

MIRAMARE – TRIESTE

December 2008

1Junior Associate of ICTP. aus
−

chukwude@yahoo.com



Abstract

A statistical technique for measuring the braking index of radio pulsars is presented. Our method

employs the recently reported strong correlation (with correlation coefficient r = 0.95) between the

observed second time derivative of the pulse rotation frequency (ν̈obs), obtained from fully phase-

coherent timing analyses, and a timing noise statistic (σR23), used to quantify the amount of pulsar

rotational fluctuations absorbed by the cubic term, to estimate the component of the measured braking

index originating solely from pulsar timing irregularity (ν̈tno). The presumed deterministic braking

index from electromagnetic torque braking processes (ν̈dip) is subsequently obtained as the magnitude

of the difference between ν̈obs and ν̈tno. Application of this method to a sample of 27 radio pulsars,

whose timing data span ∼ 9 − 13 years, show that (i) for 12 pulsars, the observed timing activity

is too weak to allow for unambiguous braking index measurements, (ii) for 5 pulsars, the braking

index appears to be significantly measured (n . 3), and (iii) for 10 pulsars, the braking indices have

anomalous values. These results are discussed in the context of the prevailing standard model for

radio pulsar spin-down.
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1 Introduction

Accurate measurements of the braking index (n, which describe how the pulsar spin-down rate varies

with its rotation frequency) is fundamental to understanding the pulsar electrodynamics (Yue, Xu

& Zhu 2007, and references therein). Currently, the prevailing picture is that pulsars are rapidly

rotating highly magnetised neutron stars powered by the rotational kinetic energy of the underlying

neutron stars (Goldreich & Julian 1969; Manchester & Taylor 1977; Shapiro & Teukolsky 1983). In

the context of the widely acclaimed standard model, the dominant energy loss mechanism is via pure

magnetic dipole radiation at the pulsar rotation frequency and acceleration of particle winds (Pacini,

1967; Manchester & Taylor 1977). The model posits that the spin-down of a pulsar should follow a

simple power relation of the form (e.g. Manchester & Taylor 1977)

ν̇ = −Kνn, (1)

where ν and ν̇ are, respectively, the pulse rotation frequency and its first time derivative, K is an

arbitrary positive constant and n = 3 is the torque braking index. Equation (1) can be differentiated

to obtain an expression for n in terms of the pulsar rotational parameters

n =
νν̈

ν̇2
, (2)

where ν̈ is the second derivative of the pulsar spin frequency with respect to time. Eq. (2) suggests

that measurements of pulsar braking index, in principle, could follow directly from the standard pulsar

timing technique involving a third-order polynomial model.

However, accurate measurements of n have proven extremely difficult. To date, significant mea-

surements have been reported in only 6 out of ∼ 1800 known pulsars. All the six measurements

were obtained from the phase-coherent timing analysis (hereafter referred to as PCTA), a technique

that relies on accounting for every turn of the pulsar (Lyne, Pritchard & Smith 1988; Kaspi, et al.

1994; Lyne et al. 1996; Camilo et al. 2000; Livingstone et al. 2006, 2007). The apparent difficulty

in measuring pulsar braking index has been largely attributed to the effects of pulsar rotational ir-

regularity, most pulsars exhibit a wide range of departures from the assumed spin-down law (Lyne &

Graham-Smith 1998; Lorimer & Kramer 2005). Broadly speaking, pulsar timing activities can take

the form of glitches, spectacular sudden jump in ν and ν̇, (e.g. Zou et al. 2008, and references therein)

and the more generic timing noise, observed as structures in the phase residuals after accounting for

the pulsar deterministic spin-down (e.g. Hobbs, Lyne & Kramer 2006, and references therein). The

presence of pulsar timing activity contaminates the deteriministic spin parameters, making accurate

measurement of the parameters almost impossible. Perhaps, ν̈ is most vulnerable to timing activity

effects owing to its extremely small amplitude (Chukwude 2007, and references therein).

Efforts to mitigate the effects of timing activity in braking index measurement have, hitherto,

relied on either pre-whitening of barycentric times of pulse arrival (BTOAs) or an outright negation

of the second derivative of the pulsar rotation frequency. Simple polynomial whitening, in which
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BTOAs are whitened by including mth-order frequency derivatives (where m > 3) in timing model,

has yielded accurate n measurements in few pulsars (Manchester, Newton & Durdin 1985; Kaspi et

al. 1994; Livingstone et al. 2007). Incidently, all these objects are younger than 3 kyr and are rapidly

spinning down pulsars (|ν̇| & 10−11 s−2). Recently, Hobbs et al. (2004) developed the harmonic

whitening technique, in which BTOAs are first whitened by least-squares fitting of harmonically-

related sinewaves. The pre-whitened BTOAs are thereafter fitted with the standard timing models.

Application of this technique to a sample of 374 pulsars (Hobbs et al. 2004) failed to produce any

realistic measurement of n in the objects. Several authors (e.g. Lyne et al. 1993) have implemented

a partially phase-coherent technique, in which pulsar spin-down rates (ν̇) are carefully calculated at

different epochs (t) using local fits to relatively shorter spans BTOAs. In this case, ν̈ is indirectly

obtained from the slope of ν̇(t)− t plot. This method presupposes that the resulting cubic term would

be minimally contaminated by prevalent pulsar timing activity. It yields n = 1.4 and 2.51, respectively,

for Vela and Crab pulsars (Lyne et al. 1993, 1996). Similarly, Johnston & Galloway (1999) integrated

equation (1) to obtain an expression for n in terms of the presumably more stable spin parameters, ν

and ν̇. Inspite of its comparative advantage of negating the highly unstable ν̈, the technique yielded

only anomalous braking indices, when applied to a sample of 20 pulsars (Johnston & Galloway 1999).

In this paper, we present an alternative method of measuring radio pulsar braking indices. The

method employs the conventional PCTA to obtain measurements of the rotation parameters (ν, ν̇ and

ν̈) and the difference between the root-mean-square phase residuals from second and third polynomial

models. Subsequently, a simple statistical technique is used to remove the contribution of timing

activity to the observed frequency second time derivative (presumed to be the sum of the deterimistic

and timing fluctuation components).

2 Theory of relationships

Following Chukwude (2003), the frequency second time derivative obtained from a fully phase-coherent

timing solution (ν̈obs) can be modeled in terms of the timing noise and the systematic components as

¯̈νobs = ν̈tno + ν̈dip, (3)

where ν̈tno is the component that originates from all forms of fluctuations in the pulsar clock (unre-

solved glitches and timing noise), ν̈dip is the deterministic spin-down component and ¯̈νobs ≡ |ν̈obs| is

the magnitude of the observed braking index. This model makes, at least, two elegant predictions.

Firstly, the coefficient of the cubic term merely models the deterministic pulsar spin-down, by way of

pure dipole magnetic torque braking (Manchester & Taylor 1977). This requires that ν̈tno ≪ ν̈dip and

ν̈obs ≃ ν̈dip. In this context, ν̈obs is expected to yield n ≃ 3. This is, most probably, the case for the

five young pulsars whose braking indices have been significantly measured via PCTA technique (e.g.

Livingstone et al. 2007).

An alternative scenario is that ν̈obs predominantly quantifies the level of the pulsar rotational

irregularity. The later scenario will require ν̈tno ≫ ν̈dip and ν̈obs ≃ ν̈tno (but ν̈dip is not necessarily
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equal to zero). These conditions will result in non-stationary braking indices, with either positive

or negative values. In particular, the braking indices obtained from ν̈obs will have anomalous values,

many orders of magnitude greater than or less than the canonical value of 3 (Johnston & Galloway

1999; Chukwude 2003; Hobbs et al. 2004). Moreover, ν̈obs will, almost certainly, correlate with some

timing noise statistics. A statistic of interest is the difference between the root-mean-squares phase

residuals obtained from 2nd- and 3rd-order polynomial models (σR23). Using a sample of 27 radio

pulsars, Chukwude (2003) shows that σR23 is 95 % correlated with timing noise dominated |ν̈obs|. This

is perhaps the most plausible scenario in majority of radio pulsars. Following Chukwude (2003), we

redefine the timing noise statistic (σR23) as

σR23 =
√

σ2
R2(2, T ) − σ2

R3(3, T ), (4)

where σR2(2, T ) and σR3(3, T ) are, respectively, the root mean square residuals from second- and

third-order polynomial fits to the BTOA data and T is the data timespan length. On the premise that

the later scenario is the prevailing case for most known radio pulsars (especially those with τc ≥ 5 kyr),

we posit a simple power-law relation between the observed braking index and the timing irregularity

statistic of the form

ν̈tno = Aσβ
R23, (5)

where we take A and β (power law index) are constants for a given sample. Theoretically, A represents

the smallest value of ν̈, for the sample, with minimal timing activity contamination. We have used

the condition that for the current scenario, ¯̈νobs ≃ ν̈tno, to arrive at equation (5). Once A and β

are obtained for a sample of radio pulsars, equation (5) can be used to estimate the timing activity

component of the pulsar braking index (ν̈tno). The deterministic component of the frequency second

derivative is given by

ν̈dip = |¯̈νobs − ν̈tno|. (6)

The choice of definition of ν̈dip in equation (6) is necessitated by the non-stationary character of ν̈obs.

3 Observations and data analyses

Regular timing observations of all pulsars in the current sample commenced at Hartebeesthoek Radio

Astronomy Observatory between 1984 January and 1987 May and is still ongoing. However, a major

interruption in HartRAO pulsar timing program occurred between 1999 June and 2000 August during

a major hardware upgrade. Save for pulsars B0833−45 and B1641−45, which were on real time glitch

monitoring program, no pulsar was observed during this period. Observations were made regularly at

intervals of . 14 days at either 1668 or 2272 MHz using the 26-m HartRAO radio telescope. Pulses

were recorded with a single 10 MHz bandwidth receiver at both frequencies and no pre-detection

dedispersion hardware was implemented during the period. Detected pulses were smoothed with an

appropriate filter-time constant, and integrated over Np consecutive rotation periods, where Np is
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different for different pulsars. An integration was usually started at a particular second by synchro-

nization to the station clock, which was derived from a hydrogen maser and was referenced to the

Universal Coordinated Time (UTC) via a Global Positioning Satellite (GPS) network.

All topocentric arrival times obtained at HartRAO, between 1984 and 1999, were transformed to

infinite observing frequency at the Solar System Barycentre (SSB) using the Jet Propulsion Laboratory

DE200 solar system ephemeris and the TEMPO software package

(http://pulsar.princeton.edu/tempo). Subsequent modelling of the resulting barycentric times of ar-

rival (BTOAs) was accomplished with the HartRAO in-house timing analysis software, which is based

on the standard pulsar timing technique of Manchester & Taylor (1977) and is well described in Flana-

gan (1995). At the solar system barycentre, the time evolution of the rotational phase of a non-binary

pulsar is better studied by fitting the BTOAs with a Taylor series expansion of phase of the form (e.g.

Manchester & Taylor 1977)

φ(t) = φ0 + ν(t − t0) +
1

2
ν̇(t − t0)

2 +
1

6
ν̈(t − t0)

3, (7)

where φ0 is the phase at an arbitrary time t0. In practice, for sufficiently accurate values of ν, ν̇ and

ν̈, Eq. (7) was used to predict the phase of a given pulsar at any time, t. Usually, the BTOAs and

initial pulsar rotation parameters constitute the input to the timing analysis software. The output

consists of the refined spin-down parameters and timing residuals (the difference between the observed

and model-predicted arrival times). Following Cordes & Downs (1985), the phase residuals, ℜ(tj) for

1 ≤ j ≤ N where N is the number of observations, are used to calculate the root-mean-square phase

residuals σR(m,T) (where, m = 2 and 3 for 2nd- and 3rd-order polynomial fits, respectively, and T is

the observation time span.).

4 Results

The relevant measured and derived parameters of the 27 HartRAO pulsars are summarized in Table 1.

Column 1 contains the pulsar name using the B1950.0 naming convention; Cols. 2 and 3 list the spin

frequency and the associated formal standard error; the spin-down rate and its formal error are

contained in Cols. 4 and 5; Cols. 6, 7 and 8 list, respectively, the observed frequency second derivative,

its formal standard error and the timing activity statistic; the calculated timing activity component

of the ν̈ and its formal error are listed in Cols. 9 and 10, respectively; Cols. 11 and 12 contain

the pressumed deterministic component of ν̈ and the associated formal error, respectively, while the

resulting braking index (ndip ≡ ν̈dipν/ν̇2) and the formal standard error are listed, respectively, in

Cols. 13 and 14.
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Table 1: The result of the observed and calculated parameters of the 27 HartRAO Pulsars.

Object ν ∆νa ν̇ ∆ν̇a ν̈obs ∆ν̈obsa σR23 ν̈tno ∆ν̈tnob ν̈dip ∆ν̈dipb ndip ∆ndip

PSRB s−1 10−15s−2 10−25s−3 mP 10−25s−3 10−25s−3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

0450-18 1.821696158392 6 -19.091821 18 0.051 12 1.3 0.067 0.200 0.016 0.210 8 105
0736-40 2.66723899983 7 -11.467300 16 -7.674 6 280.6 15.26 0.38 7.59 0.38 15386 760
0740-28 5.99657769025 6 -604.73385 6 -35.54 8 620.9 34.04 0.80 1.504 0.740 2.5 1.2
0835-41 1.330454723903 9 -6.271580 5 0.3795 10 8.5 0.444 0.025 0.065 0.031 219 80
0959-54 0.69609220478 6 -24.994522 12 -13.827 4 260.3 14.15 0.35 0.32 0.35 35 39
1054-62 2.36715607565 7 -20.01190 4 -0.326 6 4.4 0.23 16 0.094 0.158 56 92
1133+16 0.84181190896 12 -2.645946 6 0.0652 8 2.2 0.114 0.016 0.049 0.016 593 196
1221-63 4.619428499992 10 -105.71397 4 -0.1410 10 4.0 0.21 0.10 0.069 0.100 2.9 3.9
1240-64 2.574123963978 5 -29.819964 12 -0.744 4 14.3 0.647 0.057 0.097 0.058 28 17
1323-58 2.09208875280 6 -14.12989 6 4.402 6 39.1 2.082 0.085 2.320 0.087 2430 90
1323-62 1.88709280930 5 -67.258115 14 -1.706 4 33.1 1.764 0.050 0.058 0.050 2.4 2.0
1356-60 7.84290777286 4 -389.86801 7 5.06 7 85.2 4.58 0.13 0.48 0.15 2.5 7
1358-63 1.186530997525 6 -23.58777 5 8.692 8 160.2 8.66 0.23 0.027 0.220 6 48
1426-66 1.273169693773 7 -4.489741 12 -0.190 9 2.4 0.126 0.098 0.064 0.130 401 840
1449-64 5.57148949973 5 -85.23778 6 1.592 10 29.2 1.55 0.14 0.041 0.140 3 10
1451-68 3.796841136660 12 -1.424633 10 -0.037 4 0.5 0.023 0.178 0.014 0.170 2544 33259
1556-44 3.890198835898 7 -15.42827 5 0.212 8 2.6 0.137 0.088 0.075 0.080 123 144
1557-50 5.192073158034 6 -136.46835 6 -0.046 7 2.8 0.145 0.025 0.099 0.025 2.8 6
1641-45 2.197513500235 11 -97.11850 8 4.1687 6 85.7 4.60 0.12 3.43 0.12 80 3
1642-03 2.57938001879 6 -11.85138 5 -0.123 6 8.2 0.428 0.065 0.305 0.065 560 124
1706-16 1.531264844912 8 -14.73178 4 6.341 7 85.8 4.61 0.15 1.73 0.15 1222 106
1727-47 1.205132491642 18 -237.60720 5 3.560 8 43.5 2.268 0.065 1.29 0.10 2.8 2
1749-28 1.777590485696 20 -25.670282 9 -0.099 4 10.7 0.564 0.048 0.465 0.048 125 13
1822-09 1.30042174971 8 -88.36158 10 14.262 6 258.6 14.05 0.35 0.21 0.35 3.5 5.9
1929+10 4.41466176139 15 -22.542298 17 -2.185 7 12.5 0.657 0.076 1.528 0.075 1327 66
1933+16 2.78753800616 14 -46.638826 14 0.145 10 3.3 0.172 0.061 0.027 0.060 3.4 7.5
2045-16 0.509794578169 12 -2.848134 7 0.0086 12 0.1 0.005 0.004 0.003 0.004 21 23

a Errors are 2σ formal standard errors and refer to the last significant digit.

b is in units of 10−25s−3.

Figure 1 shows, on log− log scale, the plots of the absolute values of the observed frequency second

derivative (|ν̈obs|) against the timing noise statistic, σR23 (Fig. 1a) and the measured braking indices

(ndip) against the presumed deterministic frequency second derivative, ν̈pre (Fig. 1b). Fig. 1a shows

that the current definition of the pulsar timing activity statistic minimized the scatter in the ν̈ −σR23

plot. A simple linear regression analysis of the data in Fig. 1a yields a correlation coefficient r = +0.97,

which is a slight improvement over ∼ +0.95 reported for the two parameter by Chukwude (2003). In

particular, we find

log |ν̈obs| = −26.29 ± 0.05 + (1.01 ± 0.03) log σR23, (8)

The quoted errors are 2-σ formal standard errors and refer to the least significant digits. The strength

of the correlation reaffirms earlier results (Chukwude 2003; Hobbs et al. 2004) that the braking indices

of most pulsars measured from PCTA are severely contaminated by effects attributable to pulsar

timing activity (i.e. |ν̈obs| ≃ ν̈tno). Estimates of ν̈tno and ν̈dip follow directly from equations (5) and

(6), respectively. Fig. 1b shows that our method resulted in n ∼ 3 for pulsars with ν̈pre & 5 × 10−27

s−3, irrespective of the size of the error bars. The departure from 3, however, increases sharply below

5 × 10−27 s−3. For a given value of ν̈pre < 5 × 10−27 s−3, the amplitude of the departure is relatively

smaller for pulsars that exhibit weak timing activity (σR23/σW < 5).

The uncertainties listed in Table 1 are 2-σ formal standard errors and refer to the least significant

figures. The quoted errors in ν, ν̈ and ν̈obs were obtained directly from the HartRAO in-house timing

analysis software, others were calculated. The error in σR23 is contributed largely by pulse phase jitter

and instrumental errors and will, generally, have the character of white noise (Cordes & Downs 1985).
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Figure 1: Scatter plots of (a) absolute magnitude of the frequency second time derivative (ν̈obs), obtained from fully
phase-coherent timing analysis against the timing noise activity paramater (σR23), obtained as described in the text,
and (b) the calculated braking indices (ndip), against the deterministic frequency second derivative, expected from the
standard vacuum dipole model (ν̈pre), obtained as described in the text. The long dash horizontal line indicates n = 3,
the canonical value of the braking index. Key: • = pulsars with pronounced timing activity (σR23 > 5σW); + = pulsars
showing very weak timing activity (σR23 < 5σW).

The rms white noise (σW) was estimated over time intervals of ≤ 1 day using phase residuals from a

second-order timing models (Chukwude 2002). The short time scale is necessary to filter out the more

slowly varying red noise component from the white noise estimator (Cordes & Downs 1985; Chukwude

2002). Hence, estimates of σW represent the upper limit on the error in σR23. Pulsars whose phase

residuals display large amplitude intrinsic scatter are characterised by large values of (σW). For those

objects, the error in ν̈tno is dominated by the uncertainty in the rms phase residuals and could be as

high as ∼ 700% of the parameter value.

5 Discussion

The dispersions in both the characteristic ages (τc) and spin-down rates (ν̇) of the current sample of 27

radio pulsars exceed 2 orders of magnitudes (78− 43, 000) kyr and (1 − 600)×10−15 s−2, respectively,

suggesting that they are relatively young and middle-aged pulsars. The results of our analysis can be

summarised as follows:
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(i) the braking index measurements in 12 pulsars are seemingly ambiguous, with uncertainties in excess

of the measured parameters.

(ii) within the limits of quoted errors, significant n measurements (with n = 2.5 − 2.8) were possible

for 5 pulsars; and

(iii) for the remaining 10 pulsars, our method again produced anomalous braking indices (28 . n <

15400).

The size of the error bars in some of the measured braking indices is somewhat worrisome. There

are two major sources of errors in the calculated results. Firstly, small number statistics limits the

measurement precision to & 2.5% of the parameter values in all objects in the sample. A more serious

limitation on accuracy of our results comes from the signal-to-noise (SNR) of the data. Uncertainties

in σR23 could introduce errors in the range ∼ 0.2 − 700% of the observed braking index. Generally,

the quoted formal errors in the parameters of pulsars with low SNR (σR23/σW . 10) are dominated

by uncertainty in the rms phase residuals (σR23). For instance, the minimum error in ν̈tno for the

highest SNR pulsar in the current sample is ∼ 2.7% of ¯̈νobs. This error, basically, propagates through

all subsequent derived parameters (∆ν̈2
dip = ∆ν̈2

obs + ∆ν̈2
tno). Consequently, the uncertainty in the

presumed deteriministic frequency second derivative (ν̈dip) range between ∼ 2.7 − 700% of ν̈tno. In

most cases, this is several orders of magnitude greater than the expected intrinsic pulsar braking index.

The formal error in the measured braking index (ndip), which scales approximately as ∆ν̈dip/ν̈dip, is

expected to be extremely large for pulsars shown to have ∼ ∆ν̈dip ≫ ν̈dip. Minimization of the errors

in the measured braking indices would require using larger sample of high SNR pulsars. For instance,

an order of magnitude increase in the sample size will yield ∼ 1 order of magnitude improvement in

formal errors, provided that the SNR > 100.

All the 5 objects (B0740−28, B1323−62, B1356−60, B1557−50 and B1727−47) for which the

braking indices appear to be significantly measured are moderately spinning down pulsars, |ν̇| ∼ (50

− 600) ×10−15s−2. Save for PSR B0740−28 (with τc ∼ 1500kyr), all are younger than 600 kyr.

The peculiar nature of the pulsar B0740−28 has recently been highlighted (Chukwude 2007). The

author shows that the pulsar’s spin-down rate of ∼ −605 × 10−15 s−2 is atypical of objects of similar

spin-down age. In addition, the 5 pulsars are characterised by ν̈pre ≃ (0.05 − 1.51) × 10−25 s−3,

where ν̈pre ≡ 3ν̇2/ν is the deterministic frequency second derivative, assuming a standard vacuum

dipole model with n = 3. Braking indices of these amplitudes will contribute ∼ 60 − 1800 mP in a

pulsar phase over a 13-yr span of data, which apparently could be measurable. The inability of the

current technique to yield reliable value of n for the pulsar B1641−45, with comparable spin-down

parameters and age, could be attributed to enhanced glitch activity in the object during the period

under investigation (Flanagan 1993, 1995). Probably, the observed second frequency derivative for

this pulsar is a measure of the slope changes occasioned by these events. Braking index measurements

for 12 pulsars are apparently ambiguous, given error bars in excess of the measured parameters. Eight

of these pulsars exhibit exceptionally weak timing activity. The corresponding low SNR introduces

errors in the range ∼ 40 − 760% in ν̈tno, which for all the pulsars is well in excess of the measured

8



ν̈dip. Athough three of these pulsars (B1221−63, B1449−64 and B1933+16) have ndip = 2.9, 3, and

3.4, respectively, the estimated errors in the parameters are in excess by, at least, a factor. While the

size of the errors precludes any definite claim on the measurements, it does not foreclose a possibility

that the measured values of ndip could be real.

The traditional phase-coherent technique is believed to be very sensitive to the size of pulsar spin-

down rates (e.g. Lyne & Graham-Smith 1998; Lorimer & Kramer 2005; Livingstone et al. 2007). All

the five pulsars, for which the technique yielded significant measurements of n, have |ν̇| > 2 × 10−11

s−2, τc . 11 kyr and ν̈pre > 5 × 10−22 s−3 (Lyne et al. 1993, 1996; Kaspi et al. 1994; Livingstone et

al. 2005, 2006, 2007). However, pulsars with such unique characteristics are rare. For instance only

∼ 1% of the about 1800 known pulsars have |ν̇| > 1.0 × 10−11 s/s (Baiden, private communication).

Peharps, the most worrisome aspect of the PCTA method is its high sensitivity to pulsar timing

irregularities (Chukwude 2003; Hobbs et al. 2004; Lorimer & Kramer 2005; Livingstone et al. 2007).

It is now fairly well established that timing activity, either in form of glitches or the more generic

timing noise, correlates strongly with pulsar spin-down rate (Cordes & Downs 1985; D’Alessandro et

al. 1993; Chukwude 2003). In view of the rarity of pulsars with unusually large spin-down rates and

the prevalence of timing activities amongst most pulsars, the phase-coherent technique, as it is applied

currently, has little chance of improving the current statistics of measured braking indices.

The method presented in this paper, which is sensitive to the braking index of pulsars down to

|ν̇| > 40 × 10−15 s−2, τc . 1500 kyr and ν̈pre & 3 × 10−27 s−3, apparently appears more attrac-

tive. Consequently, our method can be applied more extensively in measuring n among the pulsar

population. Current statistics (Baiden, private communication) suggest that about 600 pulsars have

spin-down rates in excess of 40×10−15 s−2. Furthermore, it is the sensitivity of ν̈obs to pulsar timing

irregularities that is enormously utilized in current technique for braking index measurement. This

is remarkable given that timing irregularities (glitches and timing noise) constitute the greatest con-

straint on the PCTA technique (Cordes & Downs 1985; Lyne & Graham-Smith 1998; Hobbs et al.

2004; Lorimer & Kramer 2005). Objects with |ν̇| & 50 × 10−15 s−2, generally classified as young and

middle-aged pulsars, are most prone to all sorts of timing activity (Cordes & Helfand 1980; Cordes

& Downs 1985; D’Alessandro et al. 1995; Wang et al. 2000; Chukwude 2002; Hobbs et al. 2006) and

constitute about 30% of the known pulsar population.

6 Conclusion

A statistical method of measuring the braking index of radio pulsars has been developed and applied

to a sample of 27 radio pulsars. The method yielded significant measurements of braking index in five

pulsars. These objects have intermediate characteristic ages (79 < τc < 1500 kyr) and spin-down rates

(50×10−15 < |ν̇| < 605×10−15 s/s). Extraordinarily low signal-to-noise ratio precluded unambiguous

measurements of n in 12 pulsars, while anomalous braking indices characterised the measurements in

the remaining 10 pulsars having relatively smaller spin-down rates.
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