A LYSIMETRIC STUDY OF EVAPOTRANSPIRATION OF
NSUKKA YELLOW PEPPER, NSUKKA, NIGERIA

BY

OGBU, NGOZI ADAEZE
PG/M.ENG./03/35147

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENT FOR THE AWARD OF MASTERS
DEGREE (M. ENG.) IN AGRICULTURAL AND BIORESOURCES
ENGINEERING

APRIL, 2012
A LYSIMETRIC STUDY OF EVAPOTRANSPIRATION OF NSUKKA YELLOW PEPPER, NSUKKA, NIGERIA
APPROVAL PAGE

A LYSIMETRIC STUDY OF EVAPOTRANSPERSION OF NSUKKA YELLOW PEPPER, NSUKKA, NIGERIA

BY

OGBU, NGOZI ADAEZE
PG/M.ENG./03/35147

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTERS OF ENGINEERING (M. ENG.) DEGREE IN AGRICULTURAL AND BIORESOURCES ENGINEERING

UNIVERSITY OF NIGERIA, NSUKKA

Engr. Prof. C.C Mbajiorgu
Supervisor Signature Date

Engr. Dr.W. I. Okonkwo
Head of Department Signature Date

Prof. A.O. Ogunlela
External Examiner Signature Date
DEDICATION

TO GOD, MY EL ELOHE
ACKNOWLEDGEMENT

I express my profound gratitude to all the people who shared their opinion and experiences through which I received the required information crucial for this report.

I am very grateful to my supervisor, Prof. C.C. Mbajiorgu, who supported me through encouragement, many fruitful discussions and provision of materials.

My sincere regards also to my able Head of Department, Dr. W.I. Okonkwo; Dr. B.O. Ugwuishiwu for his invaluable suggestions, and to other staff of this department and the staff and management of Center for Basic Space Science for their contributions and advice.

The close cooperation with my colleagues, especially Engr. Okechukwu Mike, Engr. Ogbu Kingsley, Engr. Ohagwu C. as well as others was a great experience, as they helped me a lot in gathering different information and ideas.

Finally, I wish to thank my parents, Oly baby and other members of my family for their continuous support, prayers and encouragement. My prayer is that the Almighty God will greatly reward you all, Amen.

Ogbu, Ngozi Adaeze
ABSTRACT

A lysimeter consists of a block of soil in a field isolated from its surrounding by a casing. Water percolating through the soil is collected by a receiving container to a drain at the bottom of the block. Lysimeters are used to measure crop evapotranspiration which is important in agriculture for scheduling, designing and managing irrigation and drainage systems. An existing 2.0 m x 1.64 m x 1.7m drainage lysimeter installed at the experimental plot of the Agricultural and Bioresources Engineering Department, University of Nigeria, Nsukka (UNN) was used to study the evapotranspiration of an indigenous crop known as “Nsukka Yellow pepper” (*capsicum* spp). Using a watering can, the crop in and around the lysimeter was irrigated daily to augment rainfall. Drainage, irrigation, rainfall, soil moisture and evaporation were monitored. From the volumetric water balance equation, the daily data generated were used to calculate the crop evapotranspiration from the lysimeter from May ending to mid-August 2011. Climatic data for the same period were inputted in the FAO Penman-Monteith (PM) equation using CROPWAT model to determine the reference evapotranspiration. The daily crop coefficient values for Nsukka yellow pepper were determined by dividing the daily crop evapotranspiration values estimated from the lysimeter with the corresponding values of the daily reference evapotranspiration evaluated from the FAO PM method. The daily crop coefficient values for Nsukka Yellow pepper computed were used to determine daily crop evapotranspiration for Pan and modified Hargreaves methods. Each of the crop evapotranspiration for the lysimeter (ET$_c$ Lys) and FAO PM was found to be a total of 165.11 mm for the duration of study. The corresponding crop evapotranspiration for Pan and modified Hargreaves methods were 111.47 mm and 142.19 mm, respectively, for the same crop and period of study.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Approval Page</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Content</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of Study | 1 |
1.2 Justification/ Need for the Study | 2 |
1.3 Objectives of the Study | 3 |
1.4 Scope of Work | 3 |

CHAPTER TWO: LITERATURE REVIEW

2.1 LYSIMETER AND WATER MANAGEMENT | 4 |
2.1.1 What is a Lysimeter? | 4 |
2.1.2 Types of Lysimeter | 5 |
2.1.3 Uses of Lysimeters | 9 |
2.1.4 Advantages of lysimeters | 12 |
2.1.5 Disadvantages of Lysimeter | 12 |
2.2 Lysimeter Location | 13 |
2.3 Lysimeter Design | 14 |
2.3.1 Shapes, Area and Depth | 16 |
2.3.2 Weighing Mechanisms | 17 |
2.3.3 Construction | 18 |
2.3.4 Installation | 20 |
2.3.5 Filling the Lysimeter | 20 |
2.4 Lysimeter Operation | 21 |
2.4.1 Cultural Operations | 22 |
2.4.2 Data Acquisition | 22 |
2.4.3 Data Recording
2.4.4 Evapotranspiration Accuracy in Lysimeter
2.5 Management of Lysimeters
2.6 Lysimeter Monitoring
2.6.1 Lysimeter Conditioning
2.7 Evapotranspiration
2.7.1 Evapotranspiration Process
2.7.2 Reference Evapotranspiration
2.7.3 Crop Evapotranspiration (ET\(_c\))
2.7.4 Potential Evapotranspiration
2.7.5 Actual Evapotranspiration
2.8 Methods of Estimating Evapotranspiration
2.8.1 Lysimeters
2.8.2 Climatological Data
2.8.3 Pan Evaporation Method
2.8.4 Energy Balance Method
2.8.5 Soil Water Balance Method
2.9 Relationship between Reference, Maximum and Actual Evapotranspiration
2.10 Factors Affecting Evapotranspiration
2.10.1 Crop Characteristics
2.10.2 Climatic Factors
2.10.3 Management and Environmental Conditions
2.11 Crop Coefficient (K\(_c\))
2.11.1 Lysimeter-Based Crop Coefficients
2.11.2 Development of Crop Coefficient
2.11.3 Crop Coefficient Curve
2.11.4 Factors Affecting the Crop Coefficient
2.11.5 Crop Management
2.12 Soil
2.12.1 Soil Moisture
2.12.2 Available Soil Water 62
2.12.3 Soil Moisture Storage 65
2.12.4 Soil Moisture Changes 66
2.12.5 Soil Moisture Conditions 67
2.12.6 Soil Water Management 67
2.12.7 Soil Water Stress and Water Use 67
2.12.8 Soil Moisture Characteristics 68
2.12.9 Soil Profile Characteristics 68
2.12.10 Measurement of Soil Moisture 69
2.13 The Agronomy of Pepper 75

CHAPTER THREE: MATERIALS AND METHODS
3.1 Materials 80
3.2 Methods 80
3.2.1 The Study Area 80
3.2.2 Site Investigation 81
3.2.3 Description of the Lysimeter used 82
3.3 Cultural Operations 83
3.3.1 Seed-bed Preparation and Transplanting 83
3.3.2 Irrigation 83
3.3.3 Weeding 84
3.3.4 Fertilization 84
3.3.5 Maturity and Harvest 84
3.4 Data Acquisition 84
3.5 The Water Balance Method 85
3.6 Other Methods 85
3.7 Estimation of Crop Coefficient 86
3.8 Estimation of Crop Evapotranspiration for Pan and Hargreaves methods 86

CHAPTER FOUR: RESULTS AND DISCUSSION
4.1 Determination of Crop ET using Lysimeter method 87
4.2 Determination of Crop ET from Penman and calculations of Crop
Coefficient values for Nsukka Yellow Pepper 89

4.3 Determination of Crop ET of Nsukka Yellow Pepper using Pan and Modified Hargreaves methods 91

4.4 Discussion 94

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 96

5.2 Recommendations 97

REFERENCES

APPENDIX I

APPENDIX II
LIST OF TABLES

2.1 Goals and uses of Lysimeter in different fields of research .. 11
2.2 Errors in Lysimeter .. 13
2.3 Available water according to texture (mm H₂Oms⁻¹) ... 63
2.4 Typical available H₂O holding capacities based on soil texture in inches 64
2.5 Crops grouped according to sensitivities to soil water depletion fraction 65
4.1 Daily ETₖ computed from the Water Balance method (25th May-16th Aug 2011) 87
4.2 Crop Coefficient values of Nsukka yellow pepper ... 89
4.3 Daily ETₖ from 25th May-16th August computed using Lysimeter, Pan Evaporation, FAO PM and Hargreaves method ... 91
4.4 Analysis of Variance for the ETₖₗys, ETₖₚan and ETₖₕₕargr .. 94
4.5 ANOVA for ETₖₗys, ETₖₚan and ETₖₕₕargr showing the significant value 94
4.6 Duncan’s Multiple Range Test for ETₖₗys, ETₖₚan and ETₖₕₕargr .. 94
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Drainage Lysimeter</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The Hydrologic Cycle</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized Crop Coefficient for the Single Crop coefficient approach showing the crop growth stages</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>A Tensiometer</td>
<td>72</td>
</tr>
<tr>
<td>3.1</td>
<td>Maps showing Nsukka, Enugu State of Nigeria</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Topographic Map of Nsukka showing University of Nigeria, Nsukka</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Crop ET using Lysimeter, Pan and Hargreaves methods for the planting period</td>
<td>93</td>
</tr>
</tbody>
</table>