<table>
<thead>
<tr>
<th>Serial No</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Author 1</td>
<td>AGUWA, C. N.</td>
</tr>
<tr>
<td>Author 2</td>
<td></td>
</tr>
<tr>
<td>Author 3</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Pharmacologic Effects of An Aqueous Extract of Rhigiocarya Racemifera</td>
</tr>
<tr>
<td>Keywords</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Pharmacologic Effects of An Aqueous Extract of Rhigiocarya Racemifera</td>
</tr>
<tr>
<td>Category</td>
<td>Pharmaceutical Sciences</td>
</tr>
<tr>
<td>Publisher</td>
<td>Department of Pharmacology and Toxicology, University of Nigeria, Nsukka</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October, 1985</td>
</tr>
</tbody>
</table>

Signature
PHARMACOLOGIC EFFECTS OF AN AQUEOUS EXTRACT OF RHIGOCARYA RACEMIFERA

C. NZE. AGUWA
Department of Pharmacology and Toxicology, University of Nigeria, Nsukka (Nigeria)
(Accepted October 23, 1985)

Summary
PHARMACOLOGIC EFFECTS OF AN AQUEOUS EXTRACT OF RHIGIOCARYA RACEMIFERA

C. NIZE AGUWA

Department of Pharmacology and Toxicology, University of Nigeria, Nsukka (Nigeria)

(Accepted October 23, 1985)

Summary

Several pharmacologic studies were carried out with an aqueous extract of Rhigiocarya racemifera after phytochemical tests revealed the main constituent to be glycosides, saponins and tannins. Studies on intact mice showed that the extract has an intraperitoneal LD₅₀ of 142 mg/kg and that 50 mg/kg of the extract reduced gastrointestinal motility comparable to 40 mg/kg of atropine. In rats, 20 mg/kg of extract showed significant anti-ulcer activity against indomethacin-induced ulcer and this effect was equivalent to 100 mg/kg of cimetidine. Studies on isolated tissue revealed that it may have musculotrophic antispasmodic effects. These preliminary investigations seem to support its use by herbalists to treat various gastrointestinal disorders.

Introduction

Rhigiocarya racemifera (Menispermaceae) is a woody climber which grows wild in the tropical part of Southern Nigeria especially around the towns of Mbaise and Ochia in Imo State where it is called Igba (Igbo). Its botanical characteristics have been described by Hutchinson (1939) and Treae and Evans (1978). Morphologically, the features are in agreement with the descriptions of Hutchinson and Daniel (1966). The leaves of this plant are used locally by herbalists for the treatment of acute gastrointestinal pain, bloody diarrhoea, painful menstruation and/or spasmodic dysmenorrhea.

Preliminary work in our laboratory has shown that it has no antibacterial activity, but may have significant anti-ulcer effects. The purpose of this work, therefore, was to investigate this latter aspect and perhaps confirm the pharmacologic basis for its successful application in the treatment of various gastrointestinal disorders by traditional medical practitioners in Nigeria.

0078-8741/86/$02.00 © 1986 Elsevier Science Publishers Ireland Ltd.
Published and Printed in Ireland
Materials and methods

Identification

The plant was collected from Myrtle town and was identified by the staff of the Department of Pharmacognosy. A specimen has been preserved in the herbarium of the Department for future reference.

Preparation of extract

The leaves were collected in the month of October with the help of a herbarist and dried under shade. They were ground to a coarse powder, macerated over 24 h and a cold water extract prepared in such a manner that 1 ml of the water extract represented 0.5 g of dried leaves. The extract was stored in a refrigerator to prevent deterioration and dilutions prepared fresh each day for the experiments. All doses in this study are expressed in terms of the dried material.

Animals

Inbred albino mice of both sexes were used in the whole animal experiments. In the isolated tissue experiments, rat uterus, guinea pig ileum and rabbit jejunum were used where applicable.

Drugs and chemicals

Sources are as follows: di-propranolol HCl, dihydroergotamine and pento-barbital sodium (Sigma); seerotonin creatine sulfate, acetylsalicylic HCl, carbamazepine and nicotinic HCl (British Drug House); L-adrenaline bitartarate (Koch-Light Lab.); L-phenylamine, histamine dihydrochloride and activated charcoal (Merc); stilbestrol dipropionate and tragacanth (May and Baker); carbamazepine (Ciba-Geigy); heparin (Evans Medical Ltd.); cimetidine (Smith, Kline and French); atropine (Burroughs and Wellcome); oxytocin (G. Richter).

Phytochemical studies

The freshly prepared aqueous extract was chemically tested for the presence of alkaloids, glycosides, saponins tannins and reducing or oxidizing agents.

(a) Test for alkaloids (Sim 1968)

Using belladonna leaf powder as a positive reference sample, 5 ml of the extract was added dropwise to 1 ml each of Mayer's reagent (potassium mercuric iodide solution) and Wagner's reagent (iodine in potassium iodide solution) precipitate noted.

(b) Test for glycosides (Sim, 1968)

Five milliliters of the extract was boiled with 5 ml of dilute sulfuric acid
in a water bath for 15 min, cooled and neutralised with 20% potassium hydroxide. Five milliliters of this neutralised solution was taken and boiled with 1 ml of FeHling's solution. A control containing the extract and FeHling's solution was also run.

(c) Test for saponins (Sim, 1968)
Five milliliters of the extract was diluted with water and shaken vigorously.

(d) Test for tannins (Trease and Evans, 1969)
To 5 ml of the extract a few drops of ferric chloride were added and c-barreraed.

(e) Test for oxidizing agents (Clarke, 1975)
Two procedures were used: the diphenylamine test where to 2 drops of the extract was added 1 drop of 0.1% diphenylamine in sulphuric acid, and the benzidine test where a few drops of 2% benzidine in 10% acetic acid were added to 1 ml of the extract made slightly acidic with dilute sulphuric acid.

Pharmacological experiments

(a) acute toxicity test
Thirty albino mice of either sex weighing (24–28 g) were divided into five groups of six mice each. They were fasted overnight and different doses of the extract were administered i.p. to each group. The maximum volume administered per animal was 0.5 ml. The number of deaths were recorded for each group after 24 h. The doses administered were selected after preliminary experiments so that the lowest caused no death while the highest resulted in 100% death. The percentage dead were converted into probits and the LD50 calculated by the method of Miller and Tainter (1944). Autopsy of the dead mice was performed to determine the cause of death and possible damage to any organ.

(b) Gastrointestinal motility
Forty albino mice of either sex (24–28 g) were randomly divided into four equal groups. All were starved for 24 h but allowed free access to water. The mice in group A received i.p. 50 mg/kg of aqueous extract; group B, 1 mg/kg of carbahex; group C, 10 mg/kg of atropine while control group D received 50 ml/kg of normal saline. Ten minutes after the injection, 0.5 ml of 5% v/v charcoal in tragacanth mucilage was orally administered. Twenty minutes after the charcoal meal, the mice were killed with an overdose of pentobarbital and the abdomen opened. The intestines were carefully brought out and the length of movement of the charcoal meal towards the caecum from the stomach was measured and expressed as percentage of the total length of the small intestine.
(c) Anti-ulcer activity

Thirty intraduodenal saline doses of either sex (150–200 g) were divided into groups of 10 each. Group A rats served as control and were administered i.p. with 5 ml/kg of normal saline. Group B received the extracts 25 mg/kg i.p. in the same volume and group C was given cimetidine 100 mg/kg i.p., a 2% suspension in normal saline.

Ulcers were induced by the method described by Urushidani et al. (1979). The rats were fasted for 24 h with free access to water allowed. Thirty minutes after treatment with either saline, extract or cimetidine as described above, indomethacin was injected s.c. 20 mg/kg as a suspension in 1% carboxymethylcellulose with a trace of Tween-80. Seven hours after indomethacin administration, the animals were killed by a blow on the head and examined for ulcers by the method of Main and Whittle (1975).

(d) Isolated tissue experiments

Guinea-pig ileum: Several guinea pigs of either sex (300–320 g) were used. The experiments were set up by the method described by staff of the Department of Pharmacology, University of Edinburgh (1976) using a 50-ml organ bath containing Tyrode's solution with the following composition: calcium chloride 0.2 g, glucose 1.0 g, magnesium chloride 0.1 g, potassium chloride 0.2 g, sodium bicarbonate 1.0 g, sodium chloride 8.0 g, sodium hydrogen phosphate 0.05 g and deionized water to make a 1:4 solution. The bath was kept at constant temperature of 32 °C and well aerated with air. Contact time for each drug was 30 s and a 3-min cycle was used. The contractions were recorded on a slow moving smoked drum by means of a frontal writing lever (5X magnification).

Rabbit jejunum: Six rabbits of either sex (1.5–2 kg) were used. The preparation was set up in the same manner as for guinea-pig ileum.

Non-gravid rat uterus Five non-pregnant female rats (150–350 g) were used. They were treated with 0.1 mg/kg of stilbestrol s.c. 24 h before the uterus was used for experiment. The set-up consisted of constant temperature and continuous aeration in De Jaeger's solution with the following composition: sodium chloride 9 g, potassium chloride 0.4 g, calcium chloride 0.06 g, sodium bicarbonate 0.5 g, glucose 0.5 g and deionized water to make a 1:4 solution. The methodology was as described by Turner (1965) and Anika and Shetty (1982).

Results

Phytochemical studies

The chemical tests carried out revealed the presence of glycosides, saponins and tannins. The test for reducing sugars (Fehling's test) was positive while the tests for alkaloids were negative (Table 1).
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Test</th>
<th>Observation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Mayer's reagent</td>
<td>No color change</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Wagner's reagent</td>
<td>No color change</td>
<td>—</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Hydrolysis by mineral</td>
<td>Heavy reddish-brown</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>acids and a yield of</td>
<td>precipitate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reducing sugar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saponins</td>
<td>Shaking of dilute aqueous</td>
<td>Frothing</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>Bluish-black precipitate</td>
<td>+</td>
</tr>
<tr>
<td>Oxidizing agents</td>
<td>Diphenyleneamine test</td>
<td>No color change</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Benzidine test</td>
<td>No color change</td>
<td>—</td>
</tr>
</tbody>
</table>

Acute toxicity test

The LD₅₀ was calculated to be 141.5 mg/kg. Autopsy revealed that most of the mice died of massive cerebral haemorrhage. No gross abnormalities of liver or other organs were apparent.

Gastrointestinal motility

As can be seen from Table 2, the aqueous extract produced a very highly significant decrease in the gastrointestinal motility of mice.

The extract appeared to be as inhibitory as atropine when the distances travelled by the charcoal meal were compared with the control and carbachol responses.

Antulcer activity

Indomethacin induced ulcers in 90% of the control animals and the mean ulcer index was 2.12. Only 40% and 50% of the animals developed ulcers after the administration of extract and cinetidine, respectively, and the ulcer indexes were very highly significantly reduced (P < 0.1).

Isolated guinea pig ileum

Both the aqueous and alcoholic extract greatly reduced the contractions induced by acetylcholine. The addition of 28 mg of aqueous extract to the 50-ml bath reduced the contraction induced by 2 µg of acetylcholine from 9 cm to 1 cm. At a dose of 5.6 mg, the aqueous extract abolished histamine-induced contractions (10 µg) and those of nicotine (200 µg). Because of the lack of specificity, the effects may be due to direct muscular relaxation instead of specific receptor blockade.
TABLE 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment (dose)</th>
<th>% of total length travelled by charcoal meal</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Extract (50 mg/kg)</td>
<td>1.25 ± 0.35*</td>
<td><0.001</td>
</tr>
<tr>
<td>B</td>
<td>Carbocchio (1 mg/kg)</td>
<td>62.0 ± 0.5</td>
<td><0.05</td>
</tr>
<tr>
<td>C</td>
<td>Atropine (10 mg/kg)</td>
<td>0.90 ± 0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>D</td>
<td>Normal saline (50 mg/kg)</td>
<td>36.0 ± 7.5</td>
<td>—</td>
</tr>
</tbody>
</table>

* Mean of 10 determinations ± 1 S.E.M.

Isolated rabbit jejunum

The extract did not appear to have adrenergic actions as its effect could not be blocked by propranolol or dihydroergotamine. The extract produced a rather marked muscular relaxation.

Isolated non-gravid rat uterus

The extract (22.4 mg) reduced the sensitivity of the uterus to the contractile effects of oxytocin (0.04 I.U.) and significantly reduced the contractile effect of serotonin (2 [micro]g).

Discussion

The aqueous extract of the leaves of Rhigicarya racemifera appears to have a definite anti-ulcer effect since premedication with the extract (25 mg/kg i.p.) in rats reduced indomethacin-induced gastric ulcers with an effect comparable to that of 100 mg/kg of cimetidine. At a dose of 50 mg/kg i.p.,

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Quantal ulcer</th>
<th>Mean ulcer index ± S.E.</th>
<th>Degree of Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>5 ml/kg</td>
<td>9/10</td>
<td>2.12 ± 0.20</td>
<td>—</td>
</tr>
<tr>
<td>Extract</td>
<td>28</td>
<td>4/10</td>
<td>0.12 ± 0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>100</td>
<td>5/10</td>
<td>0.20 ± 0.20</td>
<td><0.001</td>
</tr>
</tbody>
</table>
it decreased gastrointestinal motility in the rat. This could be due to anti-
cholinergic and/or direct muscle relaxant effects, however, the in vitro
evidence seems to support a direct smooth muscle antispasmodic effect.

These pharmacological effects may explain its effective use in traditional
medicine in the treatment of various gastrointestinal and gynecological
diseases. Saponins, tannins and glycosides are present and their specific roles
have not been studied. Saponins may be responsible for the smooth muscle
relaxant effect since saponins are known to have anti-ulcer effects (Tresse
and Evans, 1978).

This preliminary pharmacological study, raises several questions. There is
a need to find out the specific saponin, glycoside or tannin responsible for the
observed pharmacological activities and its mechanism of action. Detailed
studies including chronic toxicity are in progress in our laboratory.

Acknowledgement

I am thankful to Mr A. Onyedimma for his assistance in this work and for
Senate Research Grant 00025/83.

References

Main, J.H.M. and Whittle, B.J.R. (1975) Investigation of vasodilator and anti-secretory
role of prostaglandins in the rat gastric mucosa by use of non-steroidal anti-inflam-

probit graph paper. Proceedings of the Society of Experimental Biology and Medicine
57, 261-265.

Siri, S.K. (1968) Medicinal Plant Alkaloids, 2nd edn., University of Toronto Press,
Toronto, Canada, pp. 9-11.

Staff of the Department of Pharmacology, University of Edinburgh (1976) Pharmacolo-
 gist Experiments on Isolated Preparations, K.L.S. Livingstone, Edinburgh, pp. 58-
63.

Thindall and Cassell, London, pp. 94-95, 405, 419-492.

p. 118-126.

Urasaburam, T., Kawase, Y. and Okabe, S. (1979) The mechanism of aggregation of
indomethacin-induced gastric ulcer by adrenalecctomy in the rat. Japanese Journal
of Pharmacology 29, 775-779.
The Journal of Entomopharmacology will accept the following contributions: original research articles; short communications; letters to the Editor; book reviews; conference announcements and more. Authors intending to write review articles should send an outline to one of the Editors before com- posing their manuscripts. Books for review should be sent to the appropriate Editor. As a rule pages will be published in English. Exceptions, if any, written in other languages will be considered. Authors are invited to submit manuscripts (original and two copies) to the appropriate Editor:

Social Anthropology, Pharmaceutical, and Toxicology
Dr. Laurent Ister, Institut de Medicina Legal, Universidade de Lausanne, 20-31, Rias-St. Clier-Noux, 1011100 Lausanne, Switzerland.

Pharmacology, Medical Botany
Dr. Jan G. Brun, Swedish Academy of Pharmaceutical Sciences. Wellington 20, P.O. Box 1150, S-1111
1 Stockholm, Sweden.

Experimental and Clinical Pharmacology
Dr. Maria M. Molina, Department of Physiology and Pharmacology, School of Pharmacy, University of the Pacific, Stockton, CA 95211, U.S.A.

Teratology, Chemicalentymology, Entomology and Biotechnology of Field Studies
Dr. Timothy W. Haines, Department of Botany, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2495, U.S.A.

Contributors are asked on the understanding that the authors have obtained the necessary authority for publication. Submission of multi-authored manuscripts implies the consent of each of the authors. The publisher will assume that the entire or corresponding author has specifically obtained the approval of all other coauthors to submit the article to this journal. Submission of an article is understood to imply that it is not under consideration for publication elsewhere and that the ethical permission to publish faithful articles is this journal implies the exclusive authorization to all the publisher without limitation of time.

Further information on copyright can be found on p. 116 of the preliminary matter at the volume.

Manuscripts should be typed, double-spaced, on pages of uniform size with wide margins. A summary of 5050 words should be included at the beginning of the paper. Authors of papers in other languages should supply a translation in English. No summary is required for a "Short Communication".

Tables should be typed on separate sheets and should bear a short descriptive title. Footnotes should be indicated by consecutive superscript letters.

Figures must be numbered and keyed into the text. The author's name, figure number and an arrow clarifying orientation should be marked in pencil on the reverse of each illustration. Line drawings and all structural formulas must be submitted as the original prints drawn in India ink. Alternately, black and white glossy prints or glossy paper may be provided. Photographs should be black and white glossy prints and not in color. Replications should be indicated by means of a ruled line on the photograph where appropriate. Legends for each figure should be typed on a separate sheet. One set of original prints is requested under each with two duplicate sets.

References should be referred to by year and cited as shown in the text and listed alphabetically at the end of the paper. Journal titles should be given in full. The references list should list alphabetically with the following examples:

Prices will be sent to the First named author unless otherwise indicated on the manuscript. These should be corrected and returned as quickly as possible.

Reprints (100) will be provided free of charge for each paper. Additional reprints may be ordered at the prices shown on the order form which will accompany the proof.

3 E Primer Scientific Publishers Ireland Ltd. Copyright reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher.

Authorization for photography items for industrial or personal use, or the interest or personal use of specific clients, is granted by Elsevier Scientific Publishers Ireland Ltd. for libraries and other users under the terms of the License Code Pack 49A, Public Libraries, of The Copyright Clearance Center Inc. 222 Rosewood Drive, Danvers, MA 01923, U.S.A. The fee code for readers of the fee for 500-599 pages of a page is $5.00 directly to CCC, 22 Congress St., Salem, MA 07830, 0377-6741/89/S0.50 + $0.35.
ORDER FORM

Send to your usual supplier or: ELSEVIER SCIENTIFIC PUBLISHERS IRELAND LTD., P.O. Box 85, Limerick, Ireland.

For further information and/or free specimen copy write to: in the U.S.A. and Canada: Journal Information Center, Elsevier Science Publishing Co., Inc., P.O. Box 1663, Grand Central Station, New York, NY 10163. U.S.A. In the rest of the world: Elsevier Scientific Publishers Ireland Ltd., P.O. Box 85, Limerick, Ireland.

Journals are automatically sent by air to the U.S.A. and Canada at no extra cost and to Japan with a small additional charge. Airmail rates for other countries are available on request.

JOURNAL OF ETHNOPHARMACOLOGY
Volumes 16-18 (2 vols. in 9 issues)

Orders from individuals must be sent direct and accompanied by a remittance.

☐ Please enter a subscription for 1989 at US$354.00 including postage and handling.

☐ Please send me a pro forma invoice

☐ I enclose: ☐ My Personal Cheque ☐ Bank Draft

☐ Please bill my credit card

☐ Mastercard ☐ American Express ☐ Access

☐ Visa

Card No. .. Valid Until..

Name ..

Address ..

Postal/Zip Code ...

Date ... Signature ..

US$ price is definitive

RECOMMENDATION TO LIBRARIAN

I would like a sample copy of: JOURNAL OF ETHNOPHARMACOLOGY

Please send to the Librarian at my Institute with my recommendation to subscribe.

My Name ..

My Department ..

Name of Library ...

Address ... Postal/Zip Code

Date ... Signature ..