<table>
<thead>
<tr>
<th>Serial No</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Author 1</td>
<td>SHU, E.N</td>
</tr>
<tr>
<td>Author 2</td>
<td>ONYEANUSI, J</td>
</tr>
<tr>
<td>Author 3</td>
<td>OKONKWO, P.O and BATEY, W.O</td>
</tr>
<tr>
<td>Title</td>
<td>Ivermectin: Concentration-Dependent Effects on Adenosine Triphosphatases in Adult Worms of Onchocerca Vovulus</td>
</tr>
<tr>
<td>Keywords</td>
<td>Concentration-Dependent Effects: Ivermectin; Triphosphatases Adult Worms</td>
</tr>
<tr>
<td>Description</td>
<td>Ivermectin: Concentration-Dependent Effects on Adenosine Triphosphatases in Adult Worms of Onchocerca Vovulus</td>
</tr>
<tr>
<td>Category</td>
<td>Medicine</td>
</tr>
<tr>
<td>Publisher</td>
<td></td>
</tr>
<tr>
<td>Publication Date</td>
<td>2000</td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
Ivermectin: concentration-dependent effects on adenosine triphosphatases in adult worms of Onchocerca volvulus

E.N. Shu *, P.O. Okonkwo *, W.O. Batey b, J. Onyeantusi b

* Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Enugu Campus, PMB 01129, Enugu, Nigeria

b Department of Medical Laboratory Sciences, University of Nigeria, Enugu Campus, Enugu, Nigeria
Aims and Scope: Acta Tropica is an international journal that covers biomedical and health sciences with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics. Its scope includes the biology of parasites and vectors, welcoming contributions concerning either basic or applied research in disciplines such as taxonomy, morphology, biochemistry, physiology and immunology; the development of tools for diagnosis and disease control; clinical and community medicine; and the epidemiology of communicable disease and health systems. Contributions may be in the form of original papers, review articles or short communications.

Editors:
A. Björkman, Department of Infectious Diseases, Karolinska Hospital, S-171 76 Stockholm, Sweden (Fax: +46-8-517 718 16; E-mail: anders.bjorkman@demed.ks.se).

G.V. Brown
The Walter and Eliza Hall Institute of Medical Research, Post Office, The Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia (Fax: +61-3-93470852; E-mail: brown.g@wehi.edu.au).

Editorial Board
J. R. Baker (Cambridge, UK) S.B. Lucas (London, UK)
B. Betschart (Neuchatel, Switzerland) M.4. Lye (Kuala Lumpur, Malaysia)
K. Bienz (Basel, Switzerland) J. Manuel (Epalinges, Switzerland)
P. Billingsley (Aberdeen, UK) D.P. McManus (Brisbane, Australia)
P. Billingsley (Bristol, Switzerland) D.H. Muysken (Liverpool, UK)
P. Billingsley (Basel, Switzerland) M. Murray (Glasgow, UK)
N.O. Christiansen (Charlottenlund, Denmark) Z.S. Pawlowski (Poznan, Poland)
C.F. Curtis (London, UK) C.T.D. Ribeiro (Rio de Janeiro, Brazil)
J.I. Daya (Nairobi, Kenya) D. M. Sala-Diakanda (Yaoundé, Cameroon)
H. Fiebrig (Basel, Switzerland) D. H. Molyneux (Liverpool, UK)
P. Füglistal (Bachel, Germany) Z. S. Pawlowski (Warsaw, Poland)
L.C. Gaybourn (Bethesda, MD, USA) R. Renz (Basel, Switzerland)
N. Gyr (Basel, Switzerland) P. Rothen (Zurich, Switzerland)
G. Hatz (Basel, Switzerland) H. Schaub (Basel, Switzerland)
K. Hatz (Basel, Switzerland) M. Schmitt (Basel, Switzerland)
P. Kohler (Zürich, Switzerland) S. M. Krassner (Irvine, CA, USA)
S. M. Kramer (Evansville, IN, USA)

Publication information: Acta Tropica (ISSN 0001-706X). For 2000, volumes 74-76 are scheduled for publication. Subscription prices are available upon request to the Publisher or from the Regional Sales Office nearest you or from the journal’s website (http://www.elsevier.nl/locate/actatropica). Further information is available at this journal’s website (http://www.elsevier.nl). Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Claims for missing issues should be made within six months of the date of dispatch.

Orders, claims, and product enquiries: Please contact the Customer Support Department at the Regional Sales Office nearest you:
New York, Elsevier Science, P.O. Box 951, New York, NY 10159-0951, USA.
Tel. (+1)252-633-3730. (Toll free number for North American customers: 1-888-888-4777).
Fax (+1)252-633-3680, e-mail usinfo-f@elsevier.com.
Amsterdam, Elsevier Science, P.O. Box 211, 1000 AE Amsterdam, The Netherlands.
Tel. (+31)20-485-3757, Fax (+31)20-485-3432, e-mail nlinfo-f@elsevier.nl.
Tel. (+81)3-561-3373, Fax (+81)3-561-3432, e-mail info@elsevier.co.jp.
Singapore, Elsevier Science, No. 1 Temasek Avenue #17-01 Millenia Tower, Singapore 039192.
Tel. (+65)343-1877, Fax (+65)343-1878, e-mail asainfo@elsevier.com.sg.
Rio de Janeiro, Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20505-002 Centro, Rio de Janeiro-RJ, Brazil.
Tel. (+55) (21) 507 554. Fax: (+55) (21) 507 554. e-mail: elsevier@laurap.com.br [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above].

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
© 2000, Elsevier Science B.V.
All rights reserved.
Printed in The United Kingdom.
Ivermectin: concentration-dependent effects on adenosine triphosphatases in adult worms of *Onchocerca volvulus*

E.N. Shu a,*, P.O. Okonkwo b, W.O. Batey a, J. Onyeanusi b

a Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Enugu Campus, PMB 01129, Enugu, Nigeria
b Department of Medical Laboratory Sciences, University of Nigeria, Enugu Campus, Enugu, Nigeria

Received 22 June 1998; received in revised form 10 May 1999; accepted 22 June 1999

Abstract

The effect of increasing concentrations of ivermectin on adenosine triphosphatase (ATPase) activity was investigated in adult worms of *Onchocerca volvulus*. Mean Mg- and Na,K-ATPase activities decreased significantly \((F\) ratio = 29.82, \(P < 0.01\) and \(F\) ratio = 28.54, \(P < 0.01\), respectively) with increasing concentrations of ivermectin (0–100 ng/ml) in the female worms. When male and female worms were mixed with equal amounts of proteins from each, only the Na,K-ATPase activity was significantly decreased \((F\) ratio = 56.61, \(P < 0.01\)) over a similar range of ivermectin concentrations. Since ivermectin exhibits concentration-dependent effects on both ATPases in female adult worms, this might provide an insight into other effects of the drug. However, the adjustment of the dose of ivermectin to obtain a nodular concentration of at least 40 ng/ml is therefore recommended in the complete chemotherapy of onchocerciasis.

© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Concentration-dependent effects; Ivermectin; Triphosphatase; Adult worms

1. Introduction

Ivermectin is a semi-synthetic macrocyclic lactone produced by the actinomycete, *Streptomyces avermitilis*. Although the long-term efficacy of a single dose is generally less than that of a full course of diethylcarbamazine (DEC), ivermectin has now replaced DEC as the treatment of choice for onchocerciasis (Coutinho et al., 1994). While DEC does not kill microfilariae in vitro, ultrastructural studies have shown that it exposes microfilariae to the body's defence mechanisms by acting on the cuticle of the parasite (Bryceonon et al., 1977). If ivermectin has a mechanism of action similar to that of DEC (Ette et al., 1990), then ivermectin may do more than just removing the cuticle of the worm since it has a sustained microfilaricidal effect. We are interested in those actions of ivermectin on the worm, before the involvement of the body's defence mechanisms. Moreover, ivermectin-facilitated immune responses may reach a critical importance only after several treatments with ivermectin (Soboslay et al., 1993), but we know that ivermectin has a...
microfilaricidal effect even after the first dose (Njoo et al., 1993).

Even though ivermectin has revolutionized the treatment of onchocerciasis, its effects on the adult worms have not been fully explored. There is some evidence in man that repeated courses may have a partial microfilaricidal or chemosterilant effect (Chavasse et al., 1992; Duke et al., 1992). This implies that adult worms of *Onchocerca volvulus* may be susceptible to doses of ivermectin greater than 150 μg/kg. A point of interest with these previous studies, which was probably overlooked, was the concentration of the drug in the plasma or nodules that caused such effects on the adult worms, bearing in mind that there is variable bio-availability in tissues (Okonkwo et al., 1994).

At a standard dose of 150 μg/kg, the mean maximum plasma concentration, C_{max}, is 38.2 ng/ml (Okonkwo et al., 1993). Recent studies (Shu et al., 1997) advocated the improvement of this dose to 300 μg/kg; yet the concentration that gets to the skin or nodules is not defined.

Considering that membrane-associated ATPases participate in a variety of cellular functions (Shu and Emeh, 1997), this study investigated the concentration of ivermectin that can have an inhibitory effect on the activities of ATPases in adult worms of *O. volvulus*. This is part of an ongoing study to adjust the dose of ivermectin administered to patients, to achieve an effective concentration on the adult worms.

2. Materials and methods

2.1. Subjects

Six male subjects aged between 20 and 40 years were involved in this study. They were recruited from an onchocerciasis-endemic region, Okpala in Ud当地 government area, Enugu, Nigeria. In a previous survey of the area, 58.3% of the population was skin-snip positive for onchocerciasis (Shu and Okonkwo, 1998). After careful clinical examination of the subjects, those with prominent palpable nodules were recruited. Further screening was done to exclude those who had taken ivermectin within the past 12 months, prior to the study. All subjects granted informed consent. This study received requisite approval from the Ethics Committee of the University of Nigeria Teaching Hospital, Enugu, Nigeria.

2.2. Nodulectomy and digestion of nodules

One nodulectomy was carried out on each subject, as previously described (Dallah et al., 1993). Xylocaine (4 ml; 1%) without adrenaline was used for local skin anaesthesia around the nodules. A skin incision (1–5 cm in length) was made over the nodule, which was identified and held by stay sutures. Dissection close to the nodule gave a bloodless field and delivered the nodule without difficulty. The wound was closed by the interrupted suture technique using silk. Oral paracetamol (3000 mg in divided doses, daily for 3 days) was offered as postoperative analgesic. The sutures were removed 1 week later.

The extirpated nodules were immediately immersed in normal saline, placed in a flask containing ice blocks and transported to the laboratory. While in the laboratory, the nodules were carefully trimmed with a pair of scissors to remove excess tissues. They were subjected to collagenase digestion by the method of Schulze-Key and Albiez (1977). The adult worms in the collagenase solution were identified and separated into two groups according to the sex of the worm.

2.3. Preparation of worms and drug

The female worms were transferred into Tyrode’s solution and left for 2 h at 4°C for microfilariae to migrate out of the worms. The microfilariae were then filtered out using a cheese cloth. Thereafter, male and female worms were homogenized separately. The worms were crushed in a pre-cooled ceramic mortar containing Tris-HCl buffer, pH 7.4, and using sand (treated in concentrated H2SO4) as an abrasive. The samples were filtered through cheese cloth and stored in aliquots at −20°C until required for enzyme assay.

Four stock solutions (2000, 4000, 5000, and 10000 ng/ml) of ivermectin were prepared.
2.4. Enzyme assay

Protein concentrations were determined according to Lowry et al. (1951) using bovine serum albumin as the standard. Prior to enzyme assays, two samples (from each subject) were considered: (1) homogenate from female worms (FW); and (2) a male and female worm homogenate (WM), mixed with equal amounts of proteins from each.

Total ATPase activity was assayed by a modified spectrophotometric method of Bonting (1970), as reported by Osbor et al. (1994). The incubation medium (pH 7.4) contained NaCl (100 mM), KCl (10 mM), MgCl₂ (0.25 mM), EDTA (0.1 mM), Tris-HCl (100 mM), ATP (25 mM), appropriate concentrations of ivermectin and enzyme extract (0.1 ml) in a reaction volume of 1 ml. The reaction was terminated with 0.4 ml 10% sodium dodecyl sulphate. Inorganic phosphate released was quantified by its reaction with ammonium molybdate as previously described (Fiske and Subbarrow, 1925).

The Mg-ATPase activity was assayed under identical conditions as the total but in the presence of ouabain (0.1 mM). Ouabain is a specific inhibitor of Na,K-ATPase whose activity was calculated as the difference between the total and Mg-ATPase activities.

ATPase activity was determined from a standard curve, using KH₂PO₄ as standard.

2.5. Data analysis

Data on the enzyme activities of worms treated with the different concentrations were subjected to one way analysis of variance (ANOVA). Significant differences between the means were compared using Duncan's New Multiple Range Test (Obi, 1986).

3. Results

Generally, the Mg-ATPase activity was significantly higher than that of Na,K-ATPase in both groups of worms, and the Mg-ATPase activity in male and female worms was 1.25 and 1.39 μmol/mg protein/h, respectively.

Table 1 summarizes the results of Mg- and Na,K-ATPase activities (μmol/mg protein/h) of female adult worms.

<table>
<thead>
<tr>
<th>Drug concentration (ng/ml)</th>
<th>Mg-ATPase</th>
<th>Na,K-ATPase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.39*</td>
<td>1.37*</td>
</tr>
<tr>
<td>20</td>
<td>1.39*</td>
<td>1.24*</td>
</tr>
<tr>
<td>40</td>
<td>0.95*</td>
<td>0.62*</td>
</tr>
<tr>
<td>50</td>
<td>0.77*</td>
<td>0.48*</td>
</tr>
<tr>
<td>100</td>
<td>0.57*</td>
<td>0.12*</td>
</tr>
</tbody>
</table>

* Mean enzyme activities with a common superscript are not significantly different (P>0.01).

Table 2 represents the enzyme activities (Mg- and Na,K-ATPases) of the worm mixture (WM).

<table>
<thead>
<tr>
<th>Drug concentration (ng/ml)</th>
<th>Mg-ATPase</th>
<th>Na,K-ATPase</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2.64</td>
<td>1.56*</td>
</tr>
<tr>
<td>20</td>
<td>2.46</td>
<td>1.48*</td>
</tr>
<tr>
<td>40</td>
<td>2.46</td>
<td>0.98*</td>
</tr>
<tr>
<td>50</td>
<td>2.35</td>
<td>0.58*</td>
</tr>
<tr>
<td>100</td>
<td>2.34</td>
<td>0.08*</td>
</tr>
</tbody>
</table>

* Mean enzyme activities with a common superscript are not significantly different (P>0.01).
Fig. 1. Activities (%) of Mg- and Na,K-ATPase after a single dose of ivermectin.

the Mg-ATPase activity of the WM. However, a significant inhibitory effect (F ratio = 56.61, $P < 0.01$) on the Na,K-ATPase activity was observed with similar increasing drug concentrations. Separation of means showed that ivermectin concentrations of 40 ng/ml and above significantly reduced ($P < 0.01$) the mean Na,K-ATPase activity of the WM. There was no significant difference ($P > 0.01$) between enzyme activities of worms treated with 40 and 50 ng/ml. However, a drug concentration of 100 ng/ml had a significant inhibitory effect on the mean enzyme activity of the WM when compared with drug concentrations of 0–50 ng/ml.

Fig. 1 represents the results of the percent activity of Mg- and Na,K-ATPase of WM at various concentrations of ivermectin, when compared with the controls. At 100 ng/ml, ivermectin had inhibitory effects of 11.36 and 94.87% on Mg- and Na,K-ATPase activities, respectively.

4. Discussion

Studies on the mechanism of action of the avermectins have relied on work with the free living nematodes, Caenorhabditis elegans and the parasitic nematode, Ascaris suum. Earlier studies suggested the modulation of GABA-mediated neurotransmission (Eine et al., 1990). More recently, the most likely explanation for how ivermectin works is that it specifically increases membrane chloride ion permeability (Turner and Schaeffer, 1989). It has been reported that ivermectin also facilitates cellular immunity in treated patients (Soboslay et al., 1993). However, there may be other sites of action at which ivermectin affects target organisms (Turner and Schaeffer, 1989). This study advances one of such sites.

In this study, mean Na,K-ATPase showed a marked decrease ($P < 0.01$) in specific activity with increase concentration of ivermectin, in both FWs and WM. These results point to a relationship between the drug and these membrane ATPases.

Unlike the FWs, there was no significant decrease ($P > 0.01$) in mean activity of Mg-ATPase in the WM. Since equal amounts of proteins from male and female worms were used, and the activity of Mg-ATPase in the FW was affected by the drug, one would have expected that enzyme activity in the WM would also have been affected. That was not the case. Moreover, since the specific activity of the FW (1.39 pmol/mg protein/h) was higher than that of the males (1.25 pmol/mg protein/h), it did not mean that the effect of the drug was not to be felt by the WM. In a previous study (Duke et al., 1992), male worms were suspected to have migrated away from the nodules leaving the females, after treatment with high doses of ivermectin. While this supports the view that ivermectin affects male and female worms differently, it does not explain why Mg-ATPase in the WM did not change significantly in this study. The small inhibition observed in the WM was probably the contribution of the inhibition from the female worms. However, this differential effect of ivermectin on Mg-ATPase activity may form the basis for further research work.

From the results of this study, one may be tempted to say that ivermectin, at doses higher than those previously administered (Chavasse et al., 1992; Duke et al., 1992) can cause the death of female macrofilariae of *O. volvulus*, considering the importance of ATPases in metabolism. Thus, the inhibition of monovalent cation (Na +,K+) and divalent cation (Mg2+,Ca2+) transport across the membrane through Na,K and Mg pumps will have a great physiological and biolog-
ical effect on the worms. Owing to these essential functions of ATPases (nerve transmission, coordination, metabolism, motility, respiratory system and organ functions in general), it is possible that the death of these worms may partially result from the inhibition of these enzymes. Since filarial metabolism would be radically affected, the production and/or secretion of immunomodulatory factors (Eikhalifa et al., 1991), which enable filariae to circulate in the human body without eliciting an apparent host immune response, might be disturbed. Subsequently, it is likely that filarial defense mechanisms may be inhibited, as the ATPase enzymes are altered, leading to the recognition and destruction by the host immune system.

Considering the inhibitory effects of ivermectin on Mg- and Na,K-ATPase activities in female adult worms, it is suggested that the dose administered to patients be adjusted to obtain a nodular concentration of at least 40 ng/ml in the nodule. If that is done, much would have been achieved in the complete chemotherapy of onchocerciasis using ivermectin.

Acknowledgements

We gratefully acknowledge the useful criticisms of S.O. Oghodo and the excellent statistical expertise of Dr K.F. Chah. This investigation received financial support from UNDP/World Bank/Special Programme for Research and Training in Tropical Disease (ID 840/048).

References

Electronic manuscripts: Electronic manuscripts have the advantages that there is no need for the rekeying of text, thereby avoiding the possibility of introducing errors and resulting in reliable and fast delivery of proofs.

For the initial submission of manuscripts for consideration, hardcopies are sufficient. For the processing of accepted papers, electronic versions are preferred. After final acceptance, your disk plus two, final and exactly matching printed versions should be submitted together. Double density (DD) or high density (HD) diskettes (3 ½ or 5 ¼ inch) are acceptable. It is important that the file saved is in the native format of the wordprocessor program used. Label the disk with the name of the computer and wordprocessing package used, your name, and the name of the file on the disk. Further information may be obtained from the Publisher.

Authors in Japan please note: Upon request, Elsevier Science K.K. will provide authors with a list of people who can check and improve the English of their papers (before submission). Please contact our Tokyo office: Elsevier Science K.K., 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044; Tel. (03) 5561-5032; Fax (03) 5561-5045.